Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
tano1221
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
ПΣӨƧӨFƬ
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
大†Shinegumi†大
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
ℛeℙ@¢ᴋ€r
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
ronaldinho424
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
Engh3
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
geodasoft
Coursera - Machine Learning (Stanford University) Vote_lcapCoursera - Machine Learning (Stanford University) Voting_barCoursera - Machine Learning (Stanford University) Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:54 pm por ПΣӨƧӨFƬ

» Ashampoo Snap 16.0.9 (x64) Multilingual
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:52 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:14 pm por tano1221

» imobie DroidKit 2.3.2.20241122 (x64)
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:03 pm por tano1221

» BlueStacks 5.21.610.1003 (Full Offline Installer)
Coursera - Machine Learning (Stanford University) EmptyHoy a las 1:01 pm por tano1221

» Aiseesoft Phone Mirror 2.2.56 (x64) Multilingual
Coursera - Machine Learning (Stanford University) EmptyHoy a las 12:58 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Coursera - Machine Learning (Stanford University)

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
Invitado
Invitado



Coursera - Machine Learning (Stanford University) Empty
MensajeTema: Coursera - Machine Learning (Stanford University)   Coursera - Machine Learning (Stanford University) EmptyJue Mayo 16, 2019 4:46 am

Coursera - Machine Learning (Stanford University) 1905161404510098
Coursera - Machine Learning (Stanford University)
WEBRip | English | MP4 + PDF slides | 960 x 540 | AVC ~157 kbps | 15 fps
AAC | 128 Kbps | 44.1 KHz | 2 channels | Subs: English (.srt) | ~12 hours | 1.48 GB
Genre: eLearning Video / Artificial Neural Network, Machine Learning (ML) Algorithms
Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it.

Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you'll learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning and AI.

This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.

Welcome to Machine Learning! In this module, we introduce the core idea of teaching a computer to learn concepts using data-without being explicitly programmed. The Course Wiki is under construction. Please visit the resources tab for the most complete and up-to-date information.

Linear Regression with One Variable
Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price
prediction, present the notion of a cost function, and introduce the gradient descent method for learning.

Linear Algebra Review
This optional module provides a refresher on linear algebra concepts. Basic understanding of linear algebra is necessary for the rest of the
course, especially as we begin to cover models with multiple variables.

Linear Regression with Multiple Variables
What if your input has more than one value? In this module, we show how linear regression can be extended to accommodate multiple input
features. We also discuss best practices for implementing linear regression.

Octave/Matlab Tutorial
This course includes programming assignments designed to help you understand how to implement the learning algorithms in practice. To complete the programming assignments, you will need to use Octave or MATLAB. This module introduces Octave/Matlab and shows you how to submit an assignment.

Logistic Regression
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logistic regression, and the application of logistic regression to multi-class classification.

Regularization
Machine learning models need to generalize well to new examples that the model has not seen in practice. In this module, we introduce
regularization, which helps prevent models from overfitting the training data.

Neural Networks: Representation
Neural networks is a model inspired by how the brain works. It is widely used today in many applications: when your phone interprets and understand your voice commands, it is likely that a neural network is helping to understand your speech; when you cash a check, the machines that automatically read the digits also use neural networks.

Neural Networks: Learning
In this module, we introduce the backpropagation algorithm that is used to help learn parameters for a neural network. At the end of this
module, you will be implementing your own neural network for digit recognition.

Advice for Applying Machine Learning
Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in
practice, and discuss the best ways to evaluate performance of the learned models.

Machine Learning System Design
To optimize a machine learning algorithm, you'll need to first understand where the biggest improvements can be made. In this module, we
discuss how to understand the performance of a machine learning system with multiple parts, and also how to deal with skewed data.

Support Vector Machines
Support vector machines, or SVMs, is a machine learning algorithm for classification. We introduce the idea and intuitions behind SVMs and
discuss how to use it in practice.

Unsupervised Learning
We use unsupervised learning to build models that help us understand our data better. We discuss the k-Means algorithm for clustering that
enable us to learn groupings of unlabeled data points.

Dimensionality Reduction
In this module, we introduce Principal Components Analysis, and show how it can be used for data compression to speed up learning
algorithms as well as for visualizations of complex datasets.

Anomaly Detection
Given a large number of data points, we may sometimes want to figure out which ones vary significantly from the average. For example, in manufacturing, we may want to detect defects or anomalies. We show how a dataset can be modeled using a Gaussian distribution, and how the model can be used for anomaly detection.

Recommender Systems
When you buy a product online, most websites automatically recommend other products that you may like. Recommender systems look at patterns of activities between different users and different products to produce these recommendations. In this module, we introduce recommender algorithms such as the collaborative filtering algorithm and low-rank matrix factorization.

Large Scale Machine Learning
Machine learning works best when there is an abundance of data to leverage for training. In this module, we discuss how to apply the machine
learning algorithms with large datasets.

Application Example: Photo OCR
Identifying and recognizing objects, words, and digits in an image is a challenging task. We discuss how a pipeline can be built to tackle this
problem and how to analyze and improve the performance of such a system.

General
Complete name : 03_Model_Representation_I_12_min.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 13.5 MiB
Duration : 12 min 1 s
Overall bit rate : 157 kb/s
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Writing application : Lavf53.29.100

Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : High@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, RefFrames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 12 min 1 s
Bit rate : 25.1 kb/s
Width : 960 pixels
Height : 540 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 15.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.003
Stream size : 2.16 MiB (16%)
Writing library : x264 core 120 r2120 0c7dab9
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=15 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00

Audio
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format profile : LC
Codec ID : mp4a-40-2
Duration : 12 min 1 s
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel positions : Front: L R
Sampling rate : 44.1 kHz
Frame rate : 43.066 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 11.0 MiB (81%)
Default : Yes
Alternate group : 1
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00

Screenshots

Coursera - Machine Learning (Stanford University) 1905161404520110
Coursera - Machine Learning (Stanford University) 1905161404530099
Coursera - Machine Learning (Stanford University) 1905161404550110

Download link:
Citación :
uploadgig_com:
https://uploadgig.com/file/download/b634d8C565ddaF2C/9eb3p.Coursera..Machine.Learning.Stanford.University.rar

rapidgator_net:
https://rapidgator.net/file/bb41cdc8f43bb9c2976b43fea5c7f152/9eb3p.Coursera..Machine.Learning.Stanford.University.rar.html

nitroflare_com:
http://nitroflare.com/view/05B1E6029666C61/9eb3p.Coursera..Machine.Learning.Stanford.University.rar

Links are Interchangeable - No Password - Single Extraction
Volver arriba Ir abajo
 

Coursera - Machine Learning (Stanford University)

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Coursera - Machine Learning by Stanford University
» Coursera - Neural Networks and Deep Learning (Stanford University)
» Coursera - Stanford Introduction to Food and Health by Stanford University
» Coursera - Game Theory (Stanford University & The University of British Columbia)
» Coursera - Neural Networks for Machine Learning (University of Toronto)

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-