Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
tano1221
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
ПΣӨƧӨFƬ
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
大†Shinegumi†大
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
ℛeℙ@¢ᴋ€r
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
ronaldinho424
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
Engh3
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
geodasoft
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_lcapPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Voting_barPython Data Science basics with Numpy, Pandas and  MatDescriptionlib Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:54 pm por ПΣӨƧӨFƬ

» Ashampoo Snap 16.0.9 (x64) Multilingual
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:52 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:14 pm por tano1221

» imobie DroidKit 2.3.2.20241122 (x64)
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:03 pm por tano1221

» BlueStacks 5.21.610.1003 (Full Offline Installer)
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 1:01 pm por tano1221

» Aiseesoft Phone Mirror 2.2.56 (x64) Multilingual
Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyHoy a las 12:58 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Python Data Science basics with Numpy, Pandas and MatDescriptionlib

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
Invitado
Invitado



Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Empty
MensajeTema: Python Data Science basics with Numpy, Pandas and MatDescriptionlib   Python Data Science basics with Numpy, Pandas and  MatDescriptionlib EmptyVie Oct 18, 2019 1:31 pm

Python Data Science basics with Numpy, Pandas and  MatDescriptionlib Bef8cacd841f9a6a6f02b94e16618508
Python Data Science basics with Numpy, Pandas and MatDescriptionlib
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 3.15 GB
Duration: 6.5 hours | Genre: eLearning Video | Language: English

Covers all Essential Python topics and Libraries for Data Science or Machine Learning Beginner

What you'll learn

Essential Python data types and data structure basics with Libraries like NumPy and Pandas for Data Science or Machine Learning Beginner.

Requirements

A decent configuration computer and the willingness to lay the corner stone for your big data journey.

Description

Welcome to my new course Python Essentials with Pandas and Numpy for Data Science

In this course, we will learn the basics of Python Data Structures and the most important Data Science libraries like NumPy and Pandas with step by step examples!

The first session will be a theory session in which, we will have an introduction to python, its applications and the libraries.

In the next session, we will proceed with installing python in your computer. We will install and configure anaconda which is a platform you can use for quick and easy installation of python and its libraries. We will get ourselves familiar with Jupiter notebook, which is the IDE that we are using throughout this course for python coding.

Then we will go ahead with the basic python data types like strings, numbers and its operations. We will deal with different types of ways to assign and access strings, string slicing, replacement, concatenation, formatting and f strings.

Dealing with numbers, we will discuss the assignment, accessing and different operations with integers and floats. The operations include basic ones and also advanced ones like exponents. Also we will check the order of operations, increments and decrements, rounding values and type casting.

Then we will proceed with basic data structures in python like Lists tuples and set. For lists, we will try different assignment, access and slicing options. Along with popular list methods, we will also see list extension, removal, reversing, sorting, min and max, existence check , list looping, slicing, and also inter-conversion of list and strings.

For Tuples also we will do the assignment and access options and the proceed with different options with set in python.

After that, we will deal with python dictionaries. Different assignment and access methods. Value update and delete methods and also looping through the values in the dictionary.

And after learning all of these basic data types and data structures, its time for us to proceed with the popular libraries for data-science in python. We will start with the NumPy library. We will check different ways to create a new NumPy array, reshaping , transforming list to arrays, zero arrays and one arrays, different array operations, array indexing, slicing, copying. we will also deal with creating and reshaping multi dimensional NumPy arrays, array transpose, and statistical operations like mean variance etc using NumPy

Later we will go ahead with the next popular python library called Pandas. At first we will deal with the one dimensional labelled array in pandas called as the series. We will create assign and access the series using different methods.

Then will go ahead with the Pandas Data frames, which is a 2-dimensional labelled data structure with columns of potentially different types. We will convert NumPy arrays and also pandas series to data frames. We will try column wise and row wise access options, dropping rows and columns, getting the summary of data frames with methods like min, max etc. Also we will convert a python dictionary into a pandas data frame. In large datasets, its common to have empty or missing data. We will see how we can manage missing data within dataframes. We will see sorting and indexing operations for data frames.

Most times, external data will be coming in either a CSV file or a JSON file. We will check how we can import CSV and JSON file data as a dataframe so that we can do the operations and later convert this data frame to either CSV and json objects and write it into the respective files.

Also we will see how we can concatenate, join and merge two pandas data frames. Then we will deal with data stacking and pivoting using the data frame and also to deal with duplicate values within the data-frame and to remove them selectively.

We can group data within a data-frame using group by methods for pandas data frame. We will check the steps we need to follow for grouping. Similarly we can do aggregation of data in the data-frame using different methods available and also using custom functions. We will also see other grouping techniques like Binning and bucketing based on data in the data-frame

At times we may need to use custom indexing for our dataframe. We will see methods to re-index rows and columns of a dataframe and also rename column indexes and rows. We will also check methods to do collective replacement of values in a dataframe and also to find the count of all or unique values in a dataframe.

Then we will proceed with implementing random permutation using both the NumPy and Pandas library and the steps to follow. Since an excelsheet and a dataframe are similar 2d arrays, we will see how we can load values in a dataframe from an excelsheet by parsing it. Then we will do condition based selection of values in a dataframe, also by using lambda functions and also finding rank based on columns.

Then we will go ahead with cross Tabulation of our dataframe using contingency tables. The steps we need to proceed with to create the cross tabulation contingency table.

After all these operations in the data we have, now its time to visualize the data. We will do exercises in which we can generate graphs and Descriptions. We will be using another popular python library called MatDescriptionlib to generate graphs and Descriptions. We will do tweaking of the grpahs and Descriptions by adjusting the Description types, its parameters, labels, titles etc.

Then we will use another visualization option called histogram which can be used to groups numbers into ranges. We will also be trying different options provided by matDescriptionlib library for histogram

Overall this course is a perfect starter pack for your long journey ahead with big data and machine learning. You will also be getting an experience certificate after the completion of the course(only if your learning platform supports)

So lets start with the lessons. See you soon in the class room.

Who this course is for:

Data science enthusiasts who want to begin their career

Python Data Science basics with Numpy, Pandas and  MatDescriptionlib E0048614f00428a9de39d132e2563b62


Download link:
Citación :
rapidgator_net:
https://rapidgator.net/file/f08bd0fa87ac5ffa5b6c7a2578636974/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part1.rar.html
https://rapidgator.net/file/c0bdbd89b453dfe8399e23c49a9d58ce/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part2.rar.html
https://rapidgator.net/file/7d8be0c684cdb3ee42f09a6e73bf9a36/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part3.rar.html
https://rapidgator.net/file/e0f0d098c31f2515ebd0a6ced772f0e7/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part4.rar.html

nitroflare_com:
https://nitroflare.com/view/072A90E5843707A/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part1.rar
https://nitroflare.com/view/0A46ACD7DAEA19A/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part2.rar
https://nitroflare.com/view/8DD90A71A98B72C/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part3.rar
https://nitroflare.com/view/D7D837815AB2D80/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part4.rar

uploadgig_com:
http://uploadgig.com/file/download/3F6b524e50a6c1df/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part1.rar
http://uploadgig.com/file/download/924cdab79fBA9cd2/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part2.rar
http://uploadgig.com/file/download/0E4967e6587937e2/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part3.rar
http://uploadgig.com/file/download/5b6674bEF891B4b7/3d7x7.Python.Data.Science.basics.with.Numpy.Pandas.and.MatDescriptionlib.part4.rar

Links are Interchangeable - No Password - Single Extraction
Volver arriba Ir abajo
 

Python Data Science basics with Numpy, Pandas and MatDescriptionlib

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Basics Data Science with Numpy, Pandas and MatDescriptionlib
» Basics Data Science with Numpy, Pandas and MatDescriptionlib
» Data Analysis With Pandas And Numpy In Python
» 2021 NumPy, Pandas and MatDescriptionlib A-Z™: for Machine Learning (Updated 07/2021)
» Python Basics for Math and Data Science 1.0: Numpy and Sympy

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-