Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
tano1221
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
ПΣӨƧӨFƬ
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
大†Shinegumi†大
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
ℛeℙ@¢ᴋ€r
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
ronaldinho424
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
Engh3
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
geodasoft
Boosting Machine Learning Models in  Python Vote_lcapBoosting Machine Learning Models in  Python Voting_barBoosting Machine Learning Models in  Python Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» ⭐️ Topaz Gigapixel Ai 8.0.2 (x64)✅Stable
Boosting Machine Learning Models in  Python EmptyHoy a las 1:38 pm por ПΣӨƧӨFƬ

» Macrorit Disk Scanner 7.0 Pro / Server / Technician / Unlimited Multilingual
Boosting Machine Learning Models in  Python EmptyHoy a las 1:21 pm por ПΣӨƧӨFƬ

» EaseUS Todo Backup 16.2.1 Build 20240402+ WinPE Multilingual
Boosting Machine Learning Models in  Python EmptyHoy a las 1:18 pm por ПΣӨƧӨFƬ

» Macrorit Data Wiper Enterprise / Pro / Server / Technician / Unlimited v7.4.0 Multilingual
Boosting Machine Learning Models in  Python EmptyHoy a las 1:02 pm por ПΣӨƧӨFƬ

» WinSnap 6.2.0 Multilingual
Boosting Machine Learning Models in  Python EmptyHoy a las 12:44 pm por ПΣӨƧӨFƬ

» HitPaw Video Converter 4.5.2 (x64) Multilingual
Boosting Machine Learning Models in  Python EmptyHoy a las 11:29 am por tano1221

» Pazu StreamGet All-In-One Video Downloader 2.5.0 Multilingual
Boosting Machine Learning Models in  Python EmptyHoy a las 10:59 am por tano1221

» Gillmeister Automatic PDF Processor 1.41
Boosting Machine Learning Models in  Python EmptyHoy a las 10:49 am por tano1221

» Office Timeline Plus / Pro / Pro+ 8.02.02.00 ​​​​​​​ | Add-in  PowerPoint
Boosting Machine Learning Models in  Python EmptyHoy a las 10:07 am por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Boosting Machine Learning Models in Python

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
Invitado
Invitado



Boosting Machine Learning Models in  Python Empty
MensajeTema: Boosting Machine Learning Models in Python   Boosting Machine Learning Models in  Python EmptyJue Mar 19, 2020 5:11 am

Boosting Machine Learning Models in  Python Adcdd1f955035f7fd3495607521e9d29

Boosting Machine Learning Models in Python
.MP4, AVC, 1920x1080, 30 fps | English, AAC, 2 Ch | 3h 7m | 590 MB
Instructor: Jakub Konczyk

Leverage ensemble techniques to maximize your machine learning models in Python

Learn

Discover and use the main concepts behind ensemble techniques and learn why they are important in applied machine learning
Learn how to use bagging to combine predictions from multiple algorithms and predict more accurately than from any individual algorithm
Use boosting to create a strong classifier from a series of weak classifiers and improve the final performance
Explore how even a very simple ensemble technique such as voting can help you maximize performance
Also learn a powerful and less well-known stacking technique, where you combine different models with another machine learning algorithm to focus on distinctive features of your dataset for each individual model
Evaluate which ensemble technique is good for a particular problem
Train, test, and evaluate your own XGBoost models

About

Machine learning ensembles are models composed of a few other models that are trained separately and then combined in some way to make an overall prediction. These powerful techniques are often used in applied machine learning to achieve the best overall performance.

In this unique course, after installing the necessary tools you will jump straight into the bagging method so as to get the best results from algorithms that are highly sensitive to specific data-for example, algorithms based on decision trees. Next, you will discover another powerful and popular class of ensemble methods called boosting. Here you'll achieve maximal algorithm performance by training a sequence of models, where each given model improves the results of the previous one. You will then explore a much simpler technique called voting, where results from multiple models are achieved using simple statistics such as the mean average. You will also work hands-on with algorithms such as stacking and XGBoost to improve performance.

By the end of this course, you will know how to use a variety of ensemble algorithms in the real world to boost your machine learning models.

Please note that a working knowledge of Python 3; the ability to run simple commands in Shell (Terminal); and also some basic machine learning experience are core prerequisites for taking and getting the best out of this course.

Features

Discover the high-level landscape of ensemble techniques and choose the best one for your particular use case
Learn the key ideas behind each ensemble technique to quickly understand its pros and cons-all while working on real-world examples
Work with XGBoost, the most popular ensemble algorithm, to train, test, and evaluate your own ML models

Boosting Machine Learning Models in  Python 676e9c0687a353421ba3465c651b720b

Download link:
Citación :
rapidgator_net:
https://rapidgator.net/file/596bf5fa9ea34a7f4e7922b3a781c41a/l64tu.Boosting.Machine.Learning.Models.in.Python.rar.html

nitroflare_com:
https://nitroflare.com/view/7C852920E4DF4C4/l64tu.Boosting.Machine.Learning.Models.in.Python.rar

uploadgig_com:
http://uploadgig.com/file/download/0eC284d806875b33/l64tu.Boosting.Machine.Learning.Models.in.Python.rar

Links are Interchangeable - No Password - Single Extraction
Volver arriba Ir abajo
 

Boosting Machine Learning Models in Python

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Build Machine Learning Models with Azure Machine Learning Designer
» Why Do Some Machine Learning Models Fail
» The Complete Supervised Machine Learning Models in R
» Authoring Machine Learning Models from Scratch
» Python Programming: Machine Learning, Deep Learning | Python

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-