Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_lcapCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Voting_barCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_rcap 
ℛeℙ@¢ᴋ€r
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_lcapCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Voting_barCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_rcap 
ПΣӨƧӨFƬ
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_lcapCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Voting_barCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_rcap 
tano1221
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_lcapCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Voting_barCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_rcap 
大†Shinegumi†大
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_lcapCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Voting_barCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_rcap 
Engh3
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_lcapCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Voting_barCoursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» O&O Defrag Professional/Server 29.1.11201 (x64) 
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 2:19 pm por ПΣӨƧӨFƬ

» n-Track Studio Suite 10.2.0.9142 Multilingual
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 2:13 pm por ПΣӨƧӨFƬ

» LibRaw RawDigger v1.4.9.821 (Profile Edition)
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 2:12 pm por ПΣӨƧӨFƬ

» FinePrint 12.08 Multilingual
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 2:06 pm por ПΣӨƧӨFƬ

» pdfFactory Pro 9.08 Multilingual
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 2:05 pm por ПΣӨƧӨFƬ

» Telegram Desktop Messenger 5.7.1 AIO Silent Multilingual
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 1:47 pm por ℛeℙ@¢ᴋ€r

» Microsoft Edge WebView2 130.0.2849.68 AIO Silent
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 1:33 pm por ℛeℙ@¢ᴋ€r

» Microsoft Edge Stable 130.0.2849.68 Dual x86x64 [Silent]
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 11:35 am por ℛeℙ@¢ᴋ€r

» WordWeb Pro 10.42 + Ultimate Reference Bundle
Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyHoy a las 10:16 am por ℛeℙ@¢ᴋ€r

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Coursera - Bayesian Methods for Machine Learning (Higher School of Economics)

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
Invitado
Invitado



Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) Empty
MensajeTema: Coursera - Bayesian Methods for Machine Learning (Higher School of Economics)   Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) EmptyVie Mayo 01, 2020 12:54 am

Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) 0b5724f360061435bc15165f3b797814

Coursera - Bayesian Methods for Machine Learning (Higher School of Economics)
WEBRip | English | MP4 | 1280 x 720 | AVC ~614 kbps | 25 fps
AAC | 128 Kbps | 44.1 KHz | 2 channels | Subs: English (.srt) | 09:40:48 | 2.2 GB
Genre: eLearning Video / Computer Science, Machine Learning, Artificial Intelligence
People apply Bayesian methods in many areas: from game development to drug discovery. They give superpowers to many machine learning algorithms: handling missing data, extracting much more information from small datasets. Bayesian methods also allow us to estimate uncertainty in predictions, which is a desirable feature for fields like medicine.

When applied to deep learning, Bayesian methods allow you to compress your models a hundred folds, and automatically tune hyperparameters, saving your time and money.
In six weeks we will discuss the basics of Bayesian methods: from how to define a probabilistic model to how to make predictions from it. We will see how one can automate this workflow and how to speed it up using some advanced techniques.
We will also see applications of Bayesian methods to deep learning and how to generate new images with it. We will see how new drugs that cure severe diseases be found with Bayesian methods.

Syllabus

Introduction to Bayesian methods & Conjugate priors
-Welcome to first week of our course! Today we will discuss what bayesian methods are and what are probabilistic models. We will see how they can be used to model real-life situations and how to make conclusions from them. We will also learn about conjugate priors - a class of models where all math becomes really simple.

Expectation-Maximization algorithm
-This week we will about the central topic in probabilistic modeling: the Latent Variable Models and how to train them, namely the Expectation Maximization algorithm. We will see models for clustering and dimensionality reduction where Expectation Maximization algorithm can be applied as is. In the following weeks, we will spend weeks 3, 4, and 5 discussing numerous extensions to this algorithm to make it work for more complicated models and scale to large datasets.

Variational Inference & Latent Dirichlet Allocation
-This week we will move on to approximate inference methods. We will see why we care about approximating distributions and see variational inference - one of the most powerful methods for this task. We will also see mean-field approximation in details. And apply it to text-mining algorithm called Latent Dirichlet Allocation

Markov chain Monte Carlo
-This week we will learn how to approximate training and inference with sampling and how to sample from complicated distributions. This will allow us to build simple method to deal with LDA and with Bayesian Neural Networks - Neural Networks which weights are random variables themselves and instead of training (finding the best value for the weights) we will sample from the posterior distributions on weights.

Variational Autoencoder
-Welcome to the fifth week of the course! This week we will combine many ideas from the previous weeks and add some new to build Variational Autoencoder - a model that can learn a distribution over structured data (like photographs or molecules) and then sample new data points from the learned distribution, hallucinating new photographs of non-existing people. We will also the same techniques to Bayesian Neural Networks and will see how this can greatly compress the weights of the network without reducing the accuracy.

Gaussian processes & Bayesian optimization
-Welcome to the final week of our course! This time we will see nonparametric Bayesian methods. Specifically, we will learn about Gaussian processes and their application to Bayesian optimization that allows one to perform optimization for scenarios in which each function evaluation is very expensive: oil probe, drug discovery and neural network architecture tuning.

Final project
-In this module you will apply methods that you learned in this course to this final project

General
Complete name : 004. Example thief & alarm.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 59.8 MiB
Duration : 11 min 10 s
Overall bit rate : 748 kb/s
Writing application : Lavf55.33.100

Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, RefFrames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 11 min 10 s
Bit rate : 614 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 25.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.027
Stream size : 49.1 MiB (82%)
Writing library : x264 core 142
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / lookahead_threads=2 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=24.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Language : English

Audio
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format profile : LC
Codec ID : mp4a-40-2
Duration : 11 min 10 s
Duration_LastFrame : -19 ms
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel positions : Front: L R
Sampling rate : 44.1 kHz
Frame rate : 43.066 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 10.2 MiB (17%)
Language : English
Default : Yes
Alternate group : 1

Screenshots

Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) 05307cfbe9784eceebe6b322f213fb75

Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) C26ff8c63b1e26a2629155df469d45a6

Coursera - Bayesian Methods for Machine Learning  (Higher School of Economics) C0454dddc4b74845fb7ad6f9f4217d3c

Download link:
Citación :
rapidgator_net:
https://rapidgator.net/file/d166a5e215cb495e23996d03355c05f1/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part01.rar.html
https://rapidgator.net/file/4a442da1cc8a8046609f1b677fcf738a/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part02.rar.html
https://rapidgator.net/file/149a77891118e93fb971dccf8ee94a6d/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part03.rar.html
https://rapidgator.net/file/72f6c7c2786b3573f2f4a33fe0f971af/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part04.rar.html
https://rapidgator.net/file/a0d3b2e413ea1dac0aed81242c2a4ac0/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part05.rar.html
https://rapidgator.net/file/8254f720a21ad8f45aa3a9744ad34699/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part06.rar.html
https://rapidgator.net/file/664e58ecf2920bfe1639fcbd72cbc574/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part07.rar.html
https://rapidgator.net/file/85de93486dc6614299d35b39a3c4e30d/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part08.rar.html
https://rapidgator.net/file/26b6306d1bf390dccfe9db728cdc287e/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part09.rar.html
https://rapidgator.net/file/8aaad871e96a6e52fe09d25e46adb184/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part10.rar.html

nitroflare_com:
https://nitroflare.com/view/D988485E3DAF7EB/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part01.rar
https://nitroflare.com/view/35CC1191F9736B5/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part02.rar
https://nitroflare.com/view/5A76228462122AB/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part03.rar
https://nitroflare.com/view/520C52217B673D8/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part04.rar
https://nitroflare.com/view/CF541259BD1CC04/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part05.rar
https://nitroflare.com/view/54FB169E5BD66FE/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part06.rar
https://nitroflare.com/view/D6C9DA961BD779D/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part07.rar
https://nitroflare.com/view/D7FBC3C73D3E4E4/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part08.rar
https://nitroflare.com/view/14EA52095CC37DA/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part09.rar
https://nitroflare.com/view/1A19801DF617E34/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part10.rar

uploadgig_com:
http://uploadgig.com/file/download/7f455bF2fc949bb7/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part01.rar
http://uploadgig.com/file/download/a974aE3b52d99833/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part02.rar
http://uploadgig.com/file/download/445B5df2c412d2d7/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part03.rar
http://uploadgig.com/file/download/5D3eB02f927259bd/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part04.rar
http://uploadgig.com/file/download/d632e649B6baD196/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part05.rar
http://uploadgig.com/file/download/256aa24bab319acF/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part06.rar
http://uploadgig.com/file/download/703eB2ffcf28C579/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part07.rar
http://uploadgig.com/file/download/3e4696c6819ef620/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part08.rar
http://uploadgig.com/file/download/4741826d71358fA5/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part09.rar
http://uploadgig.com/file/download/80778871bf01f753/oqqvv.Coursera..Bayesian.Methods.for.Machine.Learning.Higher.School.of.Economics.part10.rar

Links are Interchangeable - No Password - Single Extraction
Volver arriba Ir abajo
 

Coursera - Bayesian Methods for Machine Learning (Higher School of Economics)

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Coursera - Practical Reinforcement Learning (Higher School of Economics)
» Coursera - Introduction to Deep Learning (Higher School of Economics)
» Coursera - Deep Learning in Computer Vision (Higher School of Economics)
» Coursera - Advanced Machine Learning Specialization - by National Research University Higher Scho...
» Machine Learning, Deep Learning and Bayesian Learning

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-