Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
tano1221
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
ПΣӨƧӨFƬ
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
大†Shinegumi†大
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
ℛeℙ@¢ᴋ€r
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
ronaldinho424
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
Engh3
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
geodasoft
Working  with PANDAS Vote_lcapWorking  with PANDAS Voting_barWorking  with PANDAS Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Working  with PANDAS EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Working  with PANDAS EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Working  with PANDAS EmptyHoy a las 1:54 pm por ПΣӨƧӨFƬ

» Ashampoo Snap 16.0.9 (x64) Multilingual
Working  with PANDAS EmptyHoy a las 1:52 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Working  with PANDAS EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Working  with PANDAS EmptyHoy a las 1:14 pm por tano1221

» imobie DroidKit 2.3.2.20241122 (x64)
Working  with PANDAS EmptyHoy a las 1:03 pm por tano1221

» BlueStacks 5.21.610.1003 (Full Offline Installer)
Working  with PANDAS EmptyHoy a las 1:01 pm por tano1221

» Aiseesoft Phone Mirror 2.2.56 (x64) Multilingual
Working  with PANDAS EmptyHoy a las 12:58 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Working with PANDAS

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
Invitado
Invitado



Working  with PANDAS Empty
MensajeTema: Working with PANDAS   Working  with PANDAS EmptyLun Jul 13, 2020 12:03 am

Working  with PANDAS C017a07d3315d28df36535e094263775

Working with PANDAS
Duration: 57m | .MP4 1920x1080, 30 fps(r) | AAC, 44100 Hz, 2ch | 540 MB
Genre: eLearning | Language: English

What is Pandas
Pandas is Python's ETL package for structured data
Built on top of numpy, designed to mimic the functionality of R dataframes
Provides a convenient way to handle tabular data
Can perform all SQL functionalities, including group-by and join.
Compatible with many other Data Science packages, including visualisation packages such as MatDescriptionlib and Seaborn
Defines two main data types:
pandas.Series
pandas.DataFrame

Series
Generalised array -- can be viewed as a table with a single column
It consists of two numpy arrays:
Index array: stores the index of the elements
values array: stores the values of the elements
Each array element has an unique index (ID), contained in a separate index array
If we reorder the series, the index moves with element. So an index will always identify with the same element in the series
Indices do not have to be sequential, they do not even have to be numbers.
Think indices as the primary keys for each row in a single column table

DataFrames
A pandas DataFrame represents a table, it contains
Data in form of rows and columns
Row IDs (the index array, i.e. primary key)
Column names (ID of the columns)
A DataFrame is equivalent to collection of Series with each Series representing a column
The row indices by default start from 0 and increase by one for each subsequent row, but just like Series they can be changed to any collection of objects
Each row index uniquely identifies a particular row. If we reorder the rows, their indices go with them

Group By
Groups are usually used together with reductions
Counting number of rows in each group
my_dataframe.groupby(criteria).size()
Sum of every numerical column in each group
my_dataframe.groupby(criteria).sum()
Mean of every numerical column in each group
my_dataframe.groupby(criteria).mean()

Join
Use DataFrame.merge() as a general method of joining two dataframes:
Works also with series
Joins on the primary keys of the two dataframes (series)

Missing Values
Finding out number of missing values in each column
my_dataframe.isna().sum()
Removing rows
my_dataframe.dropna(axis = 0)
Removing columns
my_dataframe.dropna(axis = 1)
Filling with a value
For all missing values: my_dataframe.fillna(replacement_value)
Different value for each column: my_dataframe.fillna({'NAME': 'UNKNOWN', 'AGE': 0})

Map, Replace, Apply
Map applies a mapping to every element of the dataframe
my_dataframe.map({old1: new1, old2: new2, ...})
my_dataframe.map(function)
If we provide map using a dictionary, then any elements not in the keys will be mapped to numpy.nan
Replace applies a mapping to only elements of the dataframe that have been mentioned in the mapping
my_dataframe.replace ({old1: new1, old2: new2, ...})
Any elements not in the dictionary keys will not be changed

Download link:
Citación :
rapidgator_net:
https://rapidgator.net/file/0bdf410e40b34702281233f9d9aa71a6/opo7r.Working.with.PANDAS.rar.html

nitroflare_com:
https://nitroflare.com/view/A5A791D924DDF28/opo7r.Working.with.PANDAS.rar

uploadgig_com:
http://uploadgig.com/file/download/102950dcd113fe64/opo7r.Working.with.PANDAS.rar

Links are Interchangeable - No Password - Single Extraction
Volver arriba Ir abajo
 

Working with PANDAS

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Real Python - The Pandas DataFrame: Working With Data Efficiently
» Data Analysis Course with Pandas Hands on Pandas, Python (Updated)
» The Pandas Bootcamp | Data Analysis With Pandas Python3
» Pandas Masterclass: Advanced Data Analysis with Pandas
» Working from Home Essentials Working from Home Training

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-