Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
PyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_lcapPyTorch Tutorial - Neural Networks  & Deep Learning in Python Voting_barPyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_rcap 
tano1221
PyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_lcapPyTorch Tutorial - Neural Networks  & Deep Learning in Python Voting_barPyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_rcap 
ПΣӨƧӨFƬ
PyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_lcapPyTorch Tutorial - Neural Networks  & Deep Learning in Python Voting_barPyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_rcap 
ℛeℙ@¢ᴋ€r
PyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_lcapPyTorch Tutorial - Neural Networks  & Deep Learning in Python Voting_barPyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_rcap 
大†Shinegumi†大
PyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_lcapPyTorch Tutorial - Neural Networks  & Deep Learning in Python Voting_barPyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_rcap 
Engh3
PyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_lcapPyTorch Tutorial - Neural Networks  & Deep Learning in Python Voting_barPyTorch Tutorial - Neural Networks  & Deep Learning in Python Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Zoner Photo Studio X 19.2409.2.584 (x64)
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 9:53 pm por ℛeℙ@¢ᴋ€r

» ⭐️ PhraseExpress 17.0.105✅
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 9:41 pm por ℛeℙ@¢ᴋ€r

» NIUBI Partition Editor 10.0.8 Pro/Unlimited /Technician Edition [Multi]
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 9:36 pm por ℛeℙ@¢ᴋ€r

» Native Instruments Traktor Pro v4.1.0 (x64) Multilingual
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 9:29 pm por ℛeℙ@¢ᴋ€r

» dBpoweramp Music Converter R2024-11-04 Reference Retail - Windows
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 9:25 pm por ℛeℙ@¢ᴋ€r

» Movavi Video Editor Plus 2025 v25.0.1 (x64) Multilingual
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 9:01 pm por 大†Shinegumi†大

» Reallusion Cartoon Animator v5.32.3501.Multilingual
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 8:55 pm por 大†Shinegumi†大

» Mossaik Classic Pro v2.3.28 Multilingual
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 8:54 pm por 大†Shinegumi†大

» Mossaik Presets Pro 2.3.28 Multilingual
PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyHoy a las 8:52 pm por 大†Shinegumi†大

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 PyTorch Tutorial - Neural Networks & Deep Learning in Python

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
Invitado
Invitado



PyTorch Tutorial - Neural Networks  & Deep Learning in Python Empty
MensajeTema: PyTorch Tutorial - Neural Networks & Deep Learning in Python   PyTorch Tutorial - Neural Networks  & Deep Learning in Python EmptyDom Oct 18, 2020 4:52 am

PyTorch Tutorial - Neural Networks  & Deep Learning in Python Ca5e9210c3d3f1360b121ba8ddf9b0a6

PyTorch Tutorial - Neural Networks & Deep Learning in Python
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 2.93 GB
Genre: eLearning Video | Duration: 50 lectures (6 hour, 10 mins) | Language: English
Pytorch - Introduction to deep learning neural networks : Neural network applications tutorial : AI neural network model

What you'll learn

Deep Learning Basics - Getting started with Anaconda, an important Python data science environment
Neural Network Python Applications - Configuring the Anaconda environment for getting started with PyTorch
Introduction to Deep Learning Neural Networks - Theoretical underpinnings of the important concepts (such as deep learning) without the jargon
AI Neural Networks - Implementing artificial neural networks (ANN) with PyTorch
Neural Network Model - Implementing deep learning (DL) models with PyTorch
Deep Learning AI - Implement common machine learning algorithms for Image Classification
Deep Learning Neural Networks - Implement PyTorch based deep learning algorithms on imagery data

Requirements

The Ability To Install the Anaconda Environment On Your Computer/Laptop
Know how to install and load packages in Anaconda
Interest in Learning to Process Image Data
Basic Knowledge of Python Programming Syntax and Concepts is Needed to Follow the Code (e.g. functions and programming flows)
Prior Exposure to Python Data Science Concepts Will be Useful

Description

Master the Latest and Hottest of Deep Learning Frameworks (PyTorch) for Python Data Science

THIS IS A COMPLETE NEURAL NETWORKS & DEEP LEARNING TRAINING WITH PYTORCH IN PYTHON!

It is a full 5-Hour+ PyTorch Boot Camp that will help you learn basic machine learning, neural networks and deep learning using one of the most important Python Deep Learning frameworks- PyTorch.

HERE IS WHY YOU SHOULD ENROLL IN THIS COURSE:

This course is your complete guide to practical machine & deep learning using the PyTorch framework in Python..

This means, this course covers the important aspects of PyTorch and if you take this course, you can do away with taking other courses or buying books on PyTorch.

In this age of big data, companies across the globe use Python to sift through the avalanche of information at their disposal and advent of frameworks such as PyTorch is revolutionizing Deep Learning...

By gaining proficiency in PyTorch, you can give your company a competitive edge and boost your career to the next level.

THIS IS MY PROMISE TO YOU: COMPLETE THIS ONE COURSE & BECOME A PRO IN PRACTICAL PYTORCH BASED DATA SCIENCE!

But first things first. My name is Minerva Singh and I am an Oxford University MPhil (Geography and Environment) graduate. I recently finished a PhD at Cambridge University (Tropical Ecology and Conservation).

I have several years of experience in analyzing real life data from different sources using data science related techniques and producing publications for international peer reviewed journals.

Over the course of my research I realized almost all the Python data science courses and books out there do not account for the multidimensional nature of the topic and use data science interchangeably with machine learning..

This gives students an incomplete knowledge of the subject. My course, on the other hand, will give you a robust grounding in all aspects of data science within the PyTorch framework.

Unlike other Python courses and books, you will actually learn to use PyTorch on real data! Most of the other resources I encountered showed how to use PyTorch on in-built datasets which have limited use.

DISCOVER 7 COMPLETE SECTIONS ADDRESSING EVERY ASPECT OF PYTORCH:

* A full introduction to Python Data Science and powerful Python driven framework for data science, Anaconda
* Getting started with Jupyter notebooks for implementing data science techniques in Python
* A comprehensive presentation about PyTorch installation and a brief introduction to the other Python data science packages
* A brief introduction to the working of important data science packages such as Pandas and Numpy
* The basics of the PyTorch syntax and tensors
* The basics of working with imagery data in Python
* The theory behind neural network concepts such as artificial neural networks, deep neural networks and convolutional neural networks (CNN)
* You'll even discover how to create artificial neural networks and deep learning structures with PyTorch (on real data)

BUT, WAIT! THIS ISN'T JUST ANY OTHER DATA SCIENCE COURSE:

You'll start by absorbing the most valuable PyTorch basics and techniques.

I use easy-to-understand, hands-on methods to simplify and address even the most difficult concepts.

My course will help you implement the methods using real data obtained from different sources. Many courses use made-up data that does not empower students to implement Python-based data science in real -life.

After taking this course, you'll easily use packages like Numpy, Pandas, and PIL to work with real data in Python along with gaining fluency in PyTorch. I will even introduce you to deep learning models such as Convolution Neural network (CNN) !!

The underlying motivation for the course is to ensure you can apply Python-based data science on real data into practice today, start analyzing data for your own projects whatever your skill level, and impress your potential employers with actual examples of your data science abilities.

It is a practical, hands-on course, i.e. we will spend some time dealing with some of the theoretical concepts related to data science. However, the majority of the course will focus on implementing different techniques on real data and interpret the results. Some of the problems we will solve include identifying credit card fraud and classifying the images of different fruits.

After each video, you will learn a new concept or technique which you may apply to your own projects!

JOIN THE COURSE NOW!

Who this course is for:

Students interested in using the Anaconda environment for Python data science applications
Students interested in getting started with the PyTorch environment
Students Interested in Implementing Machine Learning Algorithms using PyTorch
Students Interested in Implementing Machine Learning Algorithms on Real Life Image Data
Students Interested in Learning the Basic Theoretical Concepts behind Neural Networks techniques Such as Convolutional neural network
Implement ANN on Real Data
Implement Deep Neural Networks
Implement Convolutional Neural Networks (CNN) on Imagery data
Build Image Classifiers Using Real Imagery Data and Evaluate Their Performance
Introduction to Transfer Learning

Download link:
Citación :
rapidgator_net:
https://rapidgator.net/file/6a011c2d663755bdb48d63fd8214c562/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part1.rar.html
https://rapidgator.net/file/58b5a3b5736a2af4aac6c1cfbf23bedb/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part2.rar.html
https://rapidgator.net/file/d5582d9d14a2e25e57d3c9d3b6feed0d/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part3.rar.html

nitroflare_com:
https://nitroflare.com/view/6C80D574BADDF1C/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part1.rar
https://nitroflare.com/view/B42E5652929F163/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part2.rar
https://nitroflare.com/view/C0078D30DB6DFE0/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part3.rar

alfafile_net:
http://alfafile.net/file/8QKSy/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part1.rar
http://alfafile.net/file/8QKS7/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part2.rar
http://alfafile.net/file/8QKSm/0qohl.PyTorch.Tutorial..Neural.Networks..Deep.Learning.in.Python.part3.rar

Links are Interchangeable - No Password - Single Extraction
Volver arriba Ir abajo
 

PyTorch Tutorial - Neural Networks & Deep Learning in Python

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Deep Learning And Neural Networks With Python By Spotle
» Modern Deep Convolutional Neural Networks with PyTorch
» Tensorflow and Keras For Neural Networks and Deep Learning
» Deep Learning A-Z: Hands-On Neural Networks from Scratch ©
» Deep Learning and Neural Networks - Complete BootCamp [2020]

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-