Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
tano1221
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
ПΣӨƧӨFƬ
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
大†Shinegumi†大
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
ℛeℙ@¢ᴋ€r
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
ronaldinho424
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
Engh3
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
geodasoft
Machine  Learning with Imbalanced Data Vote_lcapMachine  Learning with Imbalanced Data Voting_barMachine  Learning with Imbalanced Data Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Aiseesoft Filmai 1.0.16 (x64) Multilingual
Machine  Learning with Imbalanced Data EmptyAyer a las 10:56 pm por tano1221

» ThunderSoft Video to GIF Converter 5.5.0
Machine  Learning with Imbalanced Data EmptyAyer a las 10:43 pm por tano1221

» Light Image Resizer 7.1.2.64 Multilingual
Machine  Learning with Imbalanced Data EmptyAyer a las 10:36 pm por tano1221

» WinSnap 6.2.0 Multilingual
Machine  Learning with Imbalanced Data EmptyAyer a las 10:24 pm por tano1221

» Yamicsoft Windows Manager 2.0.8 (x64) Multilingual
Machine  Learning with Imbalanced Data EmptyAyer a las 9:24 pm por ronaldinho424

» ⭐️ Topaz Gigapixel Ai 8.0.2 (x64)✅Stable
Machine  Learning with Imbalanced Data EmptyAyer a las 9:21 pm por ronaldinho424

» Nevercenter Silo 2025.0.0 Professional
Machine  Learning with Imbalanced Data EmptyAyer a las 9:12 pm por ronaldinho424

» HitPaw Video Converter 4.5.2 (x64) Multilingual
Machine  Learning with Imbalanced Data EmptyAyer a las 8:31 pm por 大†Shinegumi†大

» GstarCAD 2025 SP1 Professional (x64)
Machine  Learning with Imbalanced Data EmptyAyer a las 8:17 pm por 大†Shinegumi†大

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Machine Learning with Imbalanced Data

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78948
Fecha de inscripción : 20/08/2016

Machine  Learning with Imbalanced Data Empty
MensajeTema: Machine Learning with Imbalanced Data   Machine  Learning with Imbalanced Data EmptySáb Nov 21, 2020 9:17 am

Machine  Learning with Imbalanced Data 672e4fb6a9afa9e5be008a34b220bc65

Machine Learning with Imbalanced Data
.MP4, AVC, 1280x720, 30 fps | English, AAC, 2 Ch | 5h 24m | 1.89 GB
Instructor: Soledad Galli

Learn multiple techniques to tackle data imbalance and improve the performance of your machine learning models.

What you'll learn

Under-sampling methods at random
Under-sampling methods which focus on observations that are harder to classify
Under-sampling methods that ignore potentially noisy observations
Over-sampling methods to increase the number of minority observations
Ways of creating syntethic data to increase the examples of the minority class
SMOTE and its variants
Use ensemble methods with sampling techniques to improve model performance
The most suitable evaluation metrics to use with imbalanced datasets

Requirements

Knowledge of machine learning basic algorithms, i.e., regression, decision trees and nearest neighbours
Python programming, including familiarity with NumPy, Pandas and Scikit-learn

Description

Welcome to Machine Learning with Imbalanced Datasets. In this course, you will learn multiple techniques which you can use with imbalanced datasets to improve the performance of your machine learning models.

If you are working with imbalanced datasets right now and want to improve the performance of your models, or you simply want to learn more about how to tackle data imbalance, this course will show you how.

We'll take you step-by-step through engaging video tutorials and teach you everything you need to know about working with imbalanced datasets. Throughout this comprehensive course, we cover almost every available methodology to work with imbalanced datasets, discussing their logic, their implementation in Python, their advantages and shortcomings, and the considerations to have when using the technique. Specifically, you will learn:

Under-sampling methods at random or focused on highlighting certain sample populations
Over-sampling methods at random and those which create new examples based of existing observations
Ensemble methods that leverage the power of multiple weak learners in conjunction with sampling techniques to boost model performance
Cost sensitive methods which penalize wrong decisions more severely for minority classes
The appropriate metrics to evaluate model performance on imbalanced datasets

By the end of the course, you will be able to decide which technique is suitable for your dataset, and / or apply and compare the improvement in performance returned by the different methods on multiple datasets.

This comprehensive machine learning course includes over 50 lectures spanning about 8 hours of video, and ALL topics include hands-on Python code examples which you can use for reference and for practice, and re-use in your own projects.

In addition, the code is updated regularly to keep up with new trends and new Python library releases.

So what are you waiting for? Enroll today, learn how to work with imbalanced datasets and build better machine learning models.

Who this course is for:

Data Scientists and Machine Learning engineers working with imbalanced datasets

DOWNLOAD:
Citación :

https://rapidgator.net/file/01c39d47f2ee02ced1a78d1be5c138e0/kyox2.Machine.Learning.with.Imbalanced.Data.rar.html


https://nitroflare.com/view/8D75B3483AF3CD2/kyox2.Machine.Learning.with.Imbalanced.Data.rar


https://uploadgig.com/file/download/539d8593fe6c4aac/kyox2.Machine.Learning.with.Imbalanced.Data.rar

Volver arriba Ir abajo
 

Machine Learning with Imbalanced Data

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Data Science, Machine Learning and Deep Learning with Python
» Data Science and Machine Learning Series Building Web Crawlers for Data Acquisition with Python S...
» Data Science and Machine Learning Series Advanced Data Acquisition using Python Scrapy, Selenium,...
» Master Data Mining in Data Science & Machine Learning
» Data Science Projects - Data Analysis & Machine Learning

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-