Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Practical Multi-Armed Bandit Algorithms in  Python Vote_lcapPractical Multi-Armed Bandit Algorithms in  Python Voting_barPractical Multi-Armed Bandit Algorithms in  Python Vote_rcap 
tano1221
Practical Multi-Armed Bandit Algorithms in  Python Vote_lcapPractical Multi-Armed Bandit Algorithms in  Python Voting_barPractical Multi-Armed Bandit Algorithms in  Python Vote_rcap 
ПΣӨƧӨFƬ
Practical Multi-Armed Bandit Algorithms in  Python Vote_lcapPractical Multi-Armed Bandit Algorithms in  Python Voting_barPractical Multi-Armed Bandit Algorithms in  Python Vote_rcap 
ℛeℙ@¢ᴋ€r
Practical Multi-Armed Bandit Algorithms in  Python Vote_lcapPractical Multi-Armed Bandit Algorithms in  Python Voting_barPractical Multi-Armed Bandit Algorithms in  Python Vote_rcap 
大†Shinegumi†大
Practical Multi-Armed Bandit Algorithms in  Python Vote_lcapPractical Multi-Armed Bandit Algorithms in  Python Voting_barPractical Multi-Armed Bandit Algorithms in  Python Vote_rcap 
Engh3
Practical Multi-Armed Bandit Algorithms in  Python Vote_lcapPractical Multi-Armed Bandit Algorithms in  Python Voting_barPractical Multi-Armed Bandit Algorithms in  Python Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Zoner Photo Studio X 19.2409.2.584 (x64)
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:50 am por missyou123

» Yellow Leads Extractor 9.1.6 Multilingual
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:48 am por missyou123

» Valentina Studio Pro 14.6.1 Multilingual
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:44 am por missyou123

» TubeDownload Pro 6.25.9
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:42 am por missyou123

» Soundtheory Kraftur 1.0.8
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:33 am por missyou123

» Sonicbits Silk 1.1.0 (Win/macOS)
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:31 am por missyou123

» Sonicbits Exakt 1.1.0 (Win/macOS)
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:29 am por missyou123

» SmartFTP Enterprise 10.0.3248 Multilingual
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:27 am por missyou123

» Signum Audio SKYE Dynamics v1.0.3
Practical Multi-Armed Bandit Algorithms in  Python EmptyHoy a las 3:23 am por missyou123

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Practical Multi-Armed Bandit Algorithms in Python

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 77047
Fecha de inscripción : 20/08/2016

Practical Multi-Armed Bandit Algorithms in  Python Empty
MensajeTema: Practical Multi-Armed Bandit Algorithms in Python   Practical Multi-Armed Bandit Algorithms in  Python EmptyJue Abr 15, 2021 4:41 am

Practical Multi-Armed Bandit Algorithms in  Python 1724b8f149c1e44b5a1edb55ba8c9c9c
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 13 lectures (3h 45m) | Size: 1.15 GB
Acquire skills to build digital AI agents capable of adaptively making critical business decisions under uncertainties.

What you'll learn:
Understanding and being able to identify Multi-Armed Bandit problems.
Modelling real business problems as MAB and implementing digital AI agents to automate them.
Understanding the challenge of RL regarding the exploration-exploitation dilema.
Practical implementation of the various algorithmic strategies for balancing between exploration and exploitation.
Python implementation of the Epsilon-greedy strategy.
Python implementation of the Softmax Exploration strategy.
Python implementation of the Optimistic Initialization strategy.
Python implementation of the Upper Confidence Bounds (UCB) strategy.
Understand the challenges of RL in terms of the design of reward functions and sample efficiency.
Estimation of action values through incremental sampling.

Requirements
Be able to understand basic OOP programs in Python.
Have basic Numpy and MatDescriptionlib knowledge.
Basic algebra skills. If you know how to add, subtract, multiply, and divide numbers, you are good to go.

Description
This course is your perfect entry point into the exciting field of Reinforcement Learning where digital Artificial Intelligence agents are built to automatically learn how to make sequential decisions through trial-and-error. Specifically, this course focuses on the Multi-Armed Bandit problems and the practical hands-on implementation of various algorithmic strategies for balancing between exploration and exploitation. Whenever you desire to consistently make the best choice out of a limited number of options over time, you are dealing with a Multi-Armed Bandit problem and this course teaches you every detail you need to know to be able to build realistic business agents to handle such situations.

With very concise explanations, this course teaches you how to confidently translate seemingly scary mathematical formulas into Python code painlessly. We understand that not many of us are technically adept in the subject of mathematics so this course intentionally stays away from maths unless it is necessary. And even when it becomes necessary to talk about mathematics, the approach taken in this course is such that anyone with basic algebra skills can understand and most importantly easily translate the maths into code and build useful intuitions in the process.

Some of the algorithmic strategies taught in this course are Epsilon Greedy, Softmax Exploration, Optimistic Initialization, Upper Confidence Bounds, and Thompson Sampling. With these tools under your belt, you are adequately equipped to readily build and deploy AI agents that can handle critical business operations under uncertainties.

Who this course is for
Anyone with a basic Python skills desiring to the started in Reinforcement Learning.
Experienced AI Engineers, ML Engineers, Data Scientist, and Software Engineers wanting to apply Reinforcement Learning to real business problems.
Business professionals willing to learn how Reinforcement Learning can help with automating adaptive decision making processes.

Practical Multi-Armed Bandit Algorithms in  Python B73d9480f1d9f16af18e3003812151e4

DOWNLOAD:
Citación :

https://rapidgator.net/file/593b900e2111aebf88bc860f438b9a92/h0x2f.Practical.MultiArmed.Bandit.Algorithms.in.Python.part1.rar.html
https://rapidgator.net/file/2ebabbaec39e53286b782966f041248a/h0x2f.Practical.MultiArmed.Bandit.Algorithms.in.Python.part2.rar.html


https://nitroflare.com/view/D3D580AD80BC952/h0x2f.Practical.MultiArmed.Bandit.Algorithms.in.Python.part1.rar
https://nitroflare.com/view/A18CD7D4F018F94/h0x2f.Practical.MultiArmed.Bandit.Algorithms.in.Python.part2.rar


https://uploadgig.com/file/download/27c9c2ddc1E9c1dE/h0x2f.Practical.MultiArmed.Bandit.Algorithms.in.Python.part1.rar
https://uploadgig.com/file/download/b53bF6165f7a80D4/h0x2f.Practical.MultiArmed.Bandit.Algorithms.in.Python.part2.rar

Volver arriba Ir abajo
 

Practical Multi-Armed Bandit Algorithms in Python

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Python 3 Project-based Python, Algorithms, Data Structures
» Real Python - Introduction to Sorting Algorithms in Python
» A Practical Guide to Algorithms with JavaScript
» A Practical Guide to Algorithms with JavaScript (2018)
» Blind75 Algorithms From Leetcode | Python

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-