Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Deep  Learning for Natural Language Processing (DL for NLP) 3 Vote_lcapDeep  Learning for Natural Language Processing (DL for NLP) 3 Voting_barDeep  Learning for Natural Language Processing (DL for NLP) 3 Vote_rcap 
ℛeℙ@¢ᴋ€r
Deep  Learning for Natural Language Processing (DL for NLP) 3 Vote_lcapDeep  Learning for Natural Language Processing (DL for NLP) 3 Voting_barDeep  Learning for Natural Language Processing (DL for NLP) 3 Vote_rcap 
tano1221
Deep  Learning for Natural Language Processing (DL for NLP) 3 Vote_lcapDeep  Learning for Natural Language Processing (DL for NLP) 3 Voting_barDeep  Learning for Natural Language Processing (DL for NLP) 3 Vote_rcap 
ПΣӨƧӨFƬ
Deep  Learning for Natural Language Processing (DL for NLP) 3 Vote_lcapDeep  Learning for Natural Language Processing (DL for NLP) 3 Voting_barDeep  Learning for Natural Language Processing (DL for NLP) 3 Vote_rcap 
大†Shinegumi†大
Deep  Learning for Natural Language Processing (DL for NLP) 3 Vote_lcapDeep  Learning for Natural Language Processing (DL for NLP) 3 Voting_barDeep  Learning for Natural Language Processing (DL for NLP) 3 Vote_rcap 
Engh3
Deep  Learning for Natural Language Processing (DL for NLP) 3 Vote_lcapDeep  Learning for Natural Language Processing (DL for NLP) 3 Voting_barDeep  Learning for Natural Language Processing (DL for NLP) 3 Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Microsoft Edge Stable 130.0.2849.68 Dual x86x64 [Silent]
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 11:35 am por ℛeℙ@¢ᴋ€r

» FinePrint 12.08 Multilingual
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 10:39 am por ℛeℙ@¢ᴋ€r

» pdfFactory Pro 9.08 Multilingual
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 10:30 am por ℛeℙ@¢ᴋ€r

» WordWeb Pro 10.42 + Ultimate Reference Bundle
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 10:16 am por ℛeℙ@¢ᴋ€r

» Pazu Netflix Video Downloader 1.8.0 (x64) Multilingual
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 10:06 am por ℛeℙ@¢ᴋ€r

» Any Video Downloader Pro 9.0.11
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 9:55 am por ℛeℙ@¢ᴋ€r

» Fast Video Downloader 4.0.0.68 Multilingual
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 9:00 am por missyou123

» FinePrint 12.08 Multilingual
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 8:58 am por missyou123

» MediaMonkey Gold 2024.0.0.3070 Beta Multilingual
Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyHoy a las 8:54 am por missyou123

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Deep Learning for Natural Language Processing (DL for NLP) 3

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 76905
Fecha de inscripción : 20/08/2016

Deep  Learning for Natural Language Processing (DL for NLP) 3 Empty
MensajeTema: Deep Learning for Natural Language Processing (DL for NLP) 3   Deep  Learning for Natural Language Processing (DL for NLP) 3 EmptyMiér Jun 16, 2021 4:00 am

Deep  Learning for Natural Language Processing (DL for NLP) 3 Fb67e482f29a80f0b2ae32db2b33152f
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 1.57 GB | Duration: 3h 27m

What you'll learn
Deep Learning for Natural Language Processing
Sentence Embeddings: Bag of words, Doc2Vec, SkipThought, InferSent, DSSM, USE, MTDNN, SentenceBERT
Generative Transformer Models: UniLM, Transformer-XL and XLNet, MASS, BART, CTRL, T5, ProphetNet
DL for NLP
Requirements
Basics of machine learning
Recurrent Models: RNNs, LSTMs, GRUs and variants
Basic understanding of Transformer based models and word embeddings
Description
This course is a part of "Deep Learning for NLP" Series. In this course, I will introduce concepts like Sentence embeddings and Generative Transformer Models. These concepts form the base for good understanding of advanced deep learning models for modern Natural Language Generation.

The course consists of two main sections as follows.

In the first section, I will talk about sentence embeddings. We will start with basic bag of words methods where sentence embedddings are obtained using an aggregation over word embeddings of constituent words. We will talk about averaged bag of words, word mover's distance, SIF and Power means method. Then we will discuss two unsupervised methods: Doc2Vec and SkipThought. Further, we will discuss about supervised sentence embedding methods like recursive neural networks, deep averaging networks and InferSent. CNNs can also be used for computing semantic similarity between two text strings; we will talk about DSSMs for the same. We will also discuss 3 multi-task learning methods including Universal Sentence Encodings and MT-DNN. Lastly, I will talk about SentenceBERT.

In the second section, I will talk about multiple Generative Transformer Models. We will start with UniLM. Then we will talk about segment recurrence and relative position embeddings in Transformer-XL. Then get to XLNets which use Transformer-XL along with permutation language modeling. Next we will understand span masking in MASS and also discuss various noising methods on BART. We will then discuss about controlled natural language generation using CTRL. We will discuss how T5 models every learning task as a text-to-text task. Finally, we will discuss how ProphetNet extends 2-stream attention modeling from XLNet to n-stream attention modeling, thereby enabling n-gram predictions.

Who this course is for:
Beginners in deep learning
Python developers interested in data science concepts
Masters of PhD students who wish to learn deep learning concepts quickly

Screenshots

Deep  Learning for Natural Language Processing (DL for NLP) 3 86f88c9a71b059005d5be187e501e0c7

DOWNLOAD:
Citación :

https://rapidgator.net/file/7f8f27ae8a4ea9ff4ba9fbb4cc973aa3/xbdf1.Deep.Learning.for.Natural.Language.Processing.DL.for.NLP.3.part1.rar.html
https://rapidgator.net/file/a5a269a2f44e393da597ff52896be255/xbdf1.Deep.Learning.for.Natural.Language.Processing.DL.for.NLP.3.part2.rar.html


https://uploadgig.com/file/download/035de83cCb8281a7/xbdf1.Deep.Learning.for.Natural.Language.Processing.DL.for.NLP.3.part1.rar
https://uploadgig.com/file/download/8feCb96a1FA6970c/xbdf1.Deep.Learning.for.Natural.Language.Processing.DL.for.NLP.3.part2.rar


https://nitroflare.com/view/BDD26C8DC07E054/xbdf1.Deep.Learning.for.Natural.Language.Processing.DL.for.NLP.3.part1.rar
https://nitroflare.com/view/5B62D34E644A8D3/xbdf1.Deep.Learning.for.Natural.Language.Processing.DL.for.NLP.3.part2.rar

Volver arriba Ir abajo
 

Deep Learning for Natural Language Processing (DL for NLP) 3

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-