Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
tano1221
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
ПΣӨƧӨFƬ
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
大†Shinegumi†大
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
ℛeℙ@¢ᴋ€r
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
ronaldinho424
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
Engh3
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
geodasoft
Mathematical Foundations of Machine Learning  (Update) Vote_lcapMathematical Foundations of Machine Learning  (Update) Voting_barMathematical Foundations of Machine Learning  (Update) Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:54 pm por ПΣӨƧӨFƬ

» Ashampoo Snap 16.0.9 (x64) Multilingual
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:52 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:14 pm por tano1221

» imobie DroidKit 2.3.2.20241122 (x64)
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:03 pm por tano1221

» BlueStacks 5.21.610.1003 (Full Offline Installer)
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 1:01 pm por tano1221

» Aiseesoft Phone Mirror 2.2.56 (x64) Multilingual
Mathematical Foundations of Machine Learning  (Update) EmptyHoy a las 12:58 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Mathematical Foundations of Machine Learning (Update)

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

Mathematical Foundations of Machine Learning  (Update) Empty
MensajeTema: Mathematical Foundations of Machine Learning (Update)   Mathematical Foundations of Machine Learning  (Update) EmptyMar Jul 06, 2021 8:36 am

Mathematical Foundations of Machine Learning  (Update) Aebdd2fcaae326b696f54eb459f75c1a
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 3.79 GB | Duration: 10h 4m

What you'll learn
Understand the fundamentals of linear algebra, a critical subject underlying all ML algorithms and data science models
Manipulate tensors using all three of the most important Python tensor libraries: NumPy, TensorFlow, and PyTorch
How to apply all of the essential vector and matrix operations for machine learning and data science
Reduce the dimensionality of complex data to the most informative elements with eigenvectors, SVD, and PCA
Solve for unknowns with both simple techniques (e.g., elimination) and advanced techniques (e.g., pseudoinversion)
Be able to more intimately grasp the details of cutting-edge machine learning papers

Requirements
All code demos will be in Python so experience with it or another object-oriented programming language would be helpful for following along with the hands-on examples.
Familiarity with secondary school-level mathematics will make the class easier to follow along with. If you are comfortable dealing with quantitative information -- such as understanding charts and rearranging simple equations -- then you should be well-prepared to follow along with all of the mathematics.

Description
To be a good data scientist, you need to know how to use data science and machine learning libraries and algorithms, such as Scikit-learn, TensorFlow, and PyTorch, to solve whatever problem you have at hand.

To be an excellent data scientist, you need to know how those libraries and algorithms work under the hood. This is where our Mathematical Foundations of Machine Learning comes in.

Led by deep learning guru Dr. Jon Krohn, this course provides a firm grasp of the mathematics - namely the linear algebra and calculus - that underlies machine learning algorithms and data science models.

The course is broken down into the following sections:

Linear Algebra Data Structures

Tensor Operations

Matrix Properties

Eigenvectors and Eigenvalues

Matrix Operations for Machine Learning

Limits

Derivatives and Differentiation

We have finished filming additional content on calculus (Sections 8 through 10), which will be edited and uploaded by Summer 2021. At that point, the Mathematical Foundations of Machine Learning course could be considered complete, but we will continue adding related bonus content - on probability, statistics, data structures, and optimization - as quickly as we can. Enrollment now includes free, unlimited access to all of this future course content - over 25 hours in total.

Throughout each of the sections, you'll find plenty of hands-on assignments, Python code demos, and practical exercises to get your math game up to speed!

Are you ready to become an outstanding data scientist? See you in the classroom.

Course Prerequisites

Programming: All code demos will be in Python so experience with it or another object-oriented programming language would be helpful for following along with the code examples.

Mathematics: Familiarity with secondary school-level mathematics will make the class easier to follow along with. If you are comfortable dealing with quantitative information - such as understanding charts and rearranging simple equations - then you should be well-prepared to follow along with all of the mathematics.

Who this course is for:
You use high-level software libraries (e.g., scikit-learn, Keras, TensorFlow) to train or deploy machine learning algorithms, and would now like to understand the fundamentals underlying the abstractions, enabling you to expand your capabilities
You're a software developer who would like to develop a firm foundation for the deployment of machine learning algorithms into production systems
You're a data scientist who would like to reinforce your understanding of the subjects at the core of your professional discipline
You're a data analyst or A.I. enthusiast who would like to become a data scientist or data/ML engineer, and so you're keen to deeply understand the field you're entering from the ground up (very wise of you!)

Screenshots

Mathematical Foundations of Machine Learning  (Update) E446abfd4a9d319c18160484bbf6d839

DOWNLOAD:
Citación :

https://rapidgator.net/file/7ddc98fbddd63903f04f229f29963e5c/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part1.rar.html
https://rapidgator.net/file/dedc060bcdeaed2a5bfd4665ae5b5163/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part2.rar.html
https://rapidgator.net/file/13b472bc9492a9d0c3748342e11757fd/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part3.rar.html
https://rapidgator.net/file/e342f081f34396bfd994a76642cbe51d/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part4.rar.html


https://uploadgig.com/file/download/F16aaa9df4200e03/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part1.rar
https://uploadgig.com/file/download/9373A6ce3fab0ABc/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part2.rar
https://uploadgig.com/file/download/9cBf6983BaA8bEaa/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part3.rar
https://uploadgig.com/file/download/06d827Bf956c4e49/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part4.rar


https://nitroflare.com/view/3766C39DC6752AC/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part1.rar
https://nitroflare.com/view/90D3B8BA0B3EB03/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part2.rar
https://nitroflare.com/view/555615A172E5571/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part3.rar
https://nitroflare.com/view/F59F33C7D96E72E/ak4qh.Mathematical.Foundations.of.Machine.Learning.Update.part4.rar

Volver arriba Ir abajo
 

Mathematical Foundations of Machine Learning (Update)

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Machine Learning and AI Foundations: Clustering and Association
» Probability / Stats: The Foundations Of Machine Learning
» Machine Learning & AI Foundations: Linear Regression
» Machine Learning and AI Foundations: Decision Trees with SPSS
» Machine Learning & Data Science Foundations Masterclass

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-