Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
tano1221
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
ПΣӨƧӨFƬ
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
大†Shinegumi†大
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
ℛeℙ@¢ᴋ€r
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
ronaldinho424
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
Engh3
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
geodasoft
Introduction  to Bayesian Analysis Course with Python 2021 Vote_lcapIntroduction  to Bayesian Analysis Course with Python 2021 Voting_barIntroduction  to Bayesian Analysis Course with Python 2021 Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:54 pm por ПΣӨƧӨFƬ

» Ashampoo Snap 16.0.9 (x64) Multilingual
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:52 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:14 pm por tano1221

» imobie DroidKit 2.3.2.20241122 (x64)
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:03 pm por tano1221

» BlueStacks 5.21.610.1003 (Full Offline Installer)
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 1:01 pm por tano1221

» Aiseesoft Phone Mirror 2.2.56 (x64) Multilingual
Introduction  to Bayesian Analysis Course with Python 2021 EmptyHoy a las 12:58 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Introduction to Bayesian Analysis Course with Python 2021

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

Introduction  to Bayesian Analysis Course with Python 2021 Empty
MensajeTema: Introduction to Bayesian Analysis Course with Python 2021   Introduction  to Bayesian Analysis Course with Python 2021 EmptySáb Jul 17, 2021 10:59 am

Introduction  to Bayesian Analysis Course with Python 2021 Ad648374c24f8c291cef1471fcf032b9
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 88 lectures (12h 54m) | Size: 4.67 GB
Learn the concepts and practical side of using the Bayesian approach to estimate likely event outcomes.

What you'll learn:
PyMC3.
posterior
ROPE
Loss functions
Gaussian
Gaussian inferences
Student's t-distribution
Groups comparison
Hierarchical models
Shrinkage
Linear models and high autocorrelation
Pearson correlation coefficient
Pearson coefficient from a multivariate Gaussian
Robust linear regression
Hierarchical linear regression
Correlation, causation, and the messiness of life
Polynomial regression
Confounding variables and redundant variables
Masking effect variables
Variable variance
Adding interactions
Logistic regression
Multiple logistic regression
Dealing with correlated variables
Dealing with unbalanced classes
Softmax regression
Discriminative and generative models
the zero-inflated Poisson model
Posterior predictive checks
Occam's razor - simplicity and accuracy
Model averaging
Bayes factors
Non-identifiability of mixture models
How to choose K values

Requirements
Python knowledge is required

Description
This course is a comprehensive guide to Bayesian Statistics. It includes video explanations along with real life illustrations, examples, numerical problems, and take away notes. The course covers the basic theory behind probabilistic and Bayesian modelling, and their applications to common problems in data science, business, and applied sciences.

The course is divided into the following sections:

Section 2 and 3: These two sections cover the concepts that are crucial to understand the basics of Bayesian Statistics-

Introduction to Bayesian Probability

Introduction to PyMC3 primer

Summarizing the posterior.

Introduction to ROPE.

introduction to Gaussian.

Student's t-distribution.

Hierarchical models Introduction.

Linear models and high autocorrelation.

Introduction to Pearson coefficient from a multivariate Gaussian.

Robust linear regression.

Hierarchical linear regression.

Correlation, causation, and the messiness of life.

Polynomial regression.

Introduction to Confounding variables and redundant variables.

Masking effect variables.

Adding interactions.

Variable variance.

Section 4: This section covers Linear model generalization:

Introduction to Generalizing linear models.

Introduction to Logistic regression.

Applying the logistic regression to The Iris dataset.

Multiple logistic regression.

Interpreting the coefficients of a logistic regression.

Dealing with correlated variables.

Dealing with unbalanced classes.

Introduction to Softmax regression.

Introduction to Discriminative and generative models.

Introduction to Poisson regression.

Introduction to The zero-inflated Poisson model.

Section 5: This section covers Model Comparison:

Posterior predictive checks Implementation.

Occam's razor - simplicity and accuracy.

Model comparison with PyMC3.

Introduction to Bayes factors.

Bayes factors Implementation.

Common problems when computing Bayes factors and solutions.

Regularizing priors.

Section 6: This section covers Mixture Models

Introduction to Finite mixture models and its implementation.

How to choose K values.

Comparing models.

Mixture models and clustering.

Introduction to Continuous mixtures

At the end of the course, you will have a complete understanding of Bayesian concepts from scratch. You will know how to effectively use Bayesian approach and think probabilistically. Enrolling in this course will make it easier for you to score well in your exams or apply Bayesian approach elsewhere.

Complete this course, master the principles, and join the queue of top Statistics students all around the world.

Who this course is for
The course is ideal for anyone interested in learning both the conceptual and practical side of using Bayes' Rule to model likely event outcomes.
The course is best suited for both students and professionals who currently make use of quantitative or probabilistic modelling.
Students currently pursuing Statistics and Probability.
Anyone who wants to build a strong fundamental of Bayesian Statistics.
Anyone who wants to apply Bayesian Statistics to other fields like ML, Artificial Intelligence, Business, Applied Sciences, Psychology. etc.
Students of Machine Learning and Data Science.
Data Scientists curious about Bayesian Statistics.

Introduction  to Bayesian Analysis Course with Python 2021 Ae7402eaf58c7941892c6449117d4142

DOWNLOAD:
Citación :

https://rapidgator.net/file/ffae570033d6c3b5db3fbb9c04cd701e/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part1.rar.html
https://rapidgator.net/file/d0ce04d79430ac14362360072aee68c1/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part2.rar.html
https://rapidgator.net/file/c5948b9013a4b5048232bfd9417a3ac4/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part3.rar.html
https://rapidgator.net/file/84cbcdb22314eefc7c140e94919d0030/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part4.rar.html
https://rapidgator.net/file/b8f0b3746da577581f909f138b2976fa/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part5.rar.html


https://uploadgig.com/file/download/aEbccde92236415a/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part1.rar
https://uploadgig.com/file/download/3Cf621622ea0b9b4/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part2.rar
https://uploadgig.com/file/download/4491d4e50a1D5402/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part3.rar
https://uploadgig.com/file/download/38e37130b9278362/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part4.rar
https://uploadgig.com/file/download/b371ae8e9dBec0D5/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part5.rar


https://nitroflare.com/view/03DE8E317E0B88B/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part1.rar
https://nitroflare.com/view/A9AA779AA86FDD0/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part2.rar
https://nitroflare.com/view/6051F027791E311/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part3.rar
https://nitroflare.com/view/B8D3B510BE2A6CE/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part4.rar
https://nitroflare.com/view/9350B96EF1661CE/fbhbs.Introduction.to.Bayesian.Analysis.Course.with.Python.2021.part5.rar

Volver arriba Ir abajo
 

Introduction to Bayesian Analysis Course with Python 2021

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Hands-On Bayesian Methods with Python
» Real Python - Introduction to Sorting Algorithms in Python
» Python for Beginners: Introduction to python programming (Updated)
» Python Learn by Python Projects & Python Quizzes in 2021
» Python for Beginners: Introduction to python programming

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-