Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Writing  production-ready ETL pipelines in Python / Pandas Vote_lcapWriting  production-ready ETL pipelines in Python / Pandas Voting_barWriting  production-ready ETL pipelines in Python / Pandas Vote_rcap 
tano1221
Writing  production-ready ETL pipelines in Python / Pandas Vote_lcapWriting  production-ready ETL pipelines in Python / Pandas Voting_barWriting  production-ready ETL pipelines in Python / Pandas Vote_rcap 
大†Shinegumi†大
Writing  production-ready ETL pipelines in Python / Pandas Vote_lcapWriting  production-ready ETL pipelines in Python / Pandas Voting_barWriting  production-ready ETL pipelines in Python / Pandas Vote_rcap 
ПΣӨƧӨFƬ
Writing  production-ready ETL pipelines in Python / Pandas Vote_lcapWriting  production-ready ETL pipelines in Python / Pandas Voting_barWriting  production-ready ETL pipelines in Python / Pandas Vote_rcap 
ℛeℙ@¢ᴋ€r
Writing  production-ready ETL pipelines in Python / Pandas Vote_lcapWriting  production-ready ETL pipelines in Python / Pandas Voting_barWriting  production-ready ETL pipelines in Python / Pandas Vote_rcap 
Engh3
Writing  production-ready ETL pipelines in Python / Pandas Vote_lcapWriting  production-ready ETL pipelines in Python / Pandas Voting_barWriting  production-ready ETL pipelines in Python / Pandas Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» SecretDNS 3.5.6
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:33 pm por missyou123

» Tracktion Software Waveform 13 Pro v13.2.0
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:29 pm por missyou123

» WordWeb Pro 10.42
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:25 pm por missyou123

» YT Video Downloader 11.22.10
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:21 pm por missyou123

» Dawesome Myth v1.51
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:19 pm por missyou123

» Dawesome Myth v1.16
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:17 pm por missyou123

» Any Video Downloader Pro 9.0.11
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:12 pm por missyou123

» 4K Downloader 5.11.11
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 8:10 pm por missyou123

» Windows Server 2025: Implementing Group Policy
Writing  production-ready ETL pipelines in Python / Pandas EmptyHoy a las 3:13 pm por missyou123

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Writing production-ready ETL pipelines in Python / Pandas

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 76894
Fecha de inscripción : 21/08/2016

Writing  production-ready ETL pipelines in Python / Pandas Empty
MensajeTema: Writing production-ready ETL pipelines in Python / Pandas   Writing  production-ready ETL pipelines in Python / Pandas EmptyDom Jul 18, 2021 12:28 am

Writing  production-ready ETL pipelines in Python / Pandas 45fc09a942197bfd802a679ae21c378c
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 78 lectures (7h 3m) | Size: 2.43 GB
Learn how to write professional ETL pipelines using best practices in Python and Data Engineering

What you'll learn:
How to write professional ETL pipelines in Python.
Steps to write production level Python code.
How to apply functional programming in Data Engineering.
How to do a proper object oriented code design.
How to use a meta file for job control.
Coding best practices for Python in ETL/Data Engineering.
How to implement a pipeline in Python extracting data from an AWS S3 source, transforming and loading the data to another AWS S3 target.

Requirements
Basic Python and Pandas knowledge is desirable.
Basic ETL and AWS S3 knowledge is desirable.

Description
This course will show each step to write an ETL pipeline in Python from scratch to production using the necessary tools such as Python 3.9, Jupyter Notebook, Git and Github, Visual Studio Code, Docker and Docker Hub and the Python packages Pandas, boto3, pyyaml, awscli, jupyter, pylint, moto, coverage and the memory-profiler.

Two different approaches how to code in the Data Engineering field will be introduced and applied - functional and object oriented programming.

Best practices in developing Python code will be introduced and applied:

design principles

clean coding

virtual environments

project/folder setup

configuration

logging

exeption handling

linting

dependency management

performance tuning with profiling

unit testing

integration testing

dockerization

What is the goal of this course?

In the course we are going to use the Xetra dataset. Xetra stands for Exchange Electronic Trading and it is the trading platform of the Deutsche Börse Group. This dataset is derived near-time on a minute-by-minute basis from Deutsche Börse's trading system and saved in an AWS S3 bucket available to the public for free.

The ETL Pipeline we are going to create will extract the Xetra dataset from the AWS S3 source bucket on a scheduled basis, create a report using transformations and load the transformed data to another AWS S3 target bucket.

The pipeline will be written in a way that it can be deployed easily to almost any production environment that can handle containerized applications. The production environment we are going to write the ETL pipeline for consists of a GitHub Code repository, a DockerHub Image Repository, an execution platform such as Kubernetes and an Orchestration tool such as the container-native Kubernetes workflow engine Argo Workflows or Apache Airflow.

So what can you expect in the course?

You will receive primarily practical interactive lessons where you have to code and implement the pipeline and theory lessons when needed. Furthermore you will get the python code for each lesson in the course material, the whole project on GitHub and the ready to use docker image with the application code on Docker Hub.

There will be power point slides for download for each theoretical lesson and useful links for each topic and step where you find more information and can even dive deeper.

Who this course is for
Data engineers, scientists and developers who want to write professional production-ready data pipelines in Python.
Everyone who is interested in writing data pipelines in Python that are ready for production.

Writing  production-ready ETL pipelines in Python / Pandas 01e8198ba3ebf3ee05711664c80d6f57

DOWNLOAD:
Citación :

https://rapidgator.net/file/06fc5c805a8c3799dc1ddf01402aaf3d/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part1.rar.html
https://rapidgator.net/file/94d0eb88fd0da19a3b5d940e81df1f2f/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part2.rar.html
https://rapidgator.net/file/32e6cc714c2fbfc8eaada183411cc084/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part3.rar.html


https://uploadgig.com/file/download/F4b38B1a4444a6fa/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part1.rar
https://uploadgig.com/file/download/dF5e28d1361eAeb6/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part2.rar
https://uploadgig.com/file/download/2b2C16cbe773e184/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part3.rar


https://nitroflare.com/view/9D85CA6B884EA75/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part1.rar
https://nitroflare.com/view/74F12F5C53B6217/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part2.rar
https://nitroflare.com/view/58B8BC19595B454/n65in.Writing.productionready.ETL.pipelines.in.Python..Pandas.part3.rar

Volver arriba Ir abajo
En línea
 

Writing production-ready ETL pipelines in Python / Pandas

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Data Analysis Course with Pandas Hands on Pandas, Python (Updated)
» Test Production Ready Apps with Cypress
» Flutter & Firebase - From Scratch To Production Ready App
» Egghead - Test Production Ready Apps with Cypress
» AutoML: Build Production-Ready Models Quickly!

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-