Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
tano1221
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
ПΣӨƧӨFƬ
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
大†Shinegumi†大
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
ℛeℙ@¢ᴋ€r
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
ronaldinho424
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
Engh3
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
geodasoft
PySpark  for Data Science - Intermediate Vote_lcapPySpark  for Data Science - Intermediate Voting_barPySpark  for Data Science - Intermediate Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Display Driver Uninstaller 18.0.8.7
PySpark  for Data Science - Intermediate EmptyHoy a las 10:08 pm por ronaldinho424

» Skylum Luminar Neo v1.22.0 (14095) (x64) Multilingual
PySpark  for Data Science - Intermediate EmptyHoy a las 9:50 pm por ronaldinho424

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
PySpark  for Data Science - Intermediate EmptyHoy a las 9:45 pm por ronaldinho424

»  Luxion KeyShot Studio Enterprise 2024.3 v13.2.0.184 Multilingual (x64)
PySpark  for Data Science - Intermediate EmptyHoy a las 7:59 pm por 大†Shinegumi†大

» Ashampoo Snap 16.0.9 (x64) Multilingual
PySpark  for Data Science - Intermediate EmptyHoy a las 7:55 pm por 大†Shinegumi†大

» CodeSector Direct Folders Pro v4.3.2
PySpark  for Data Science - Intermediate EmptyHoy a las 7:54 pm por 大†Shinegumi†大

» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
PySpark  for Data Science - Intermediate EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
PySpark  for Data Science - Intermediate EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
PySpark  for Data Science - Intermediate EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 PySpark for Data Science - Intermediate

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

PySpark  for Data Science - Intermediate Empty
MensajeTema: PySpark for Data Science - Intermediate   PySpark  for Data Science - Intermediate EmptyMar Jul 20, 2021 7:55 pm

PySpark  for Data Science - Intermediate E98940106ccc7f027d0c054dc927e468
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + .srt | Duration: 16 lectures (2 hour, 9 mins) | Size: 1.19 GB
You get to learn about how to use spark python or PySpark to perform data analysis.

What you'll learn

This module on PySpark Tutorials aims to explain the intermediate concepts such as those like the use of Spark session in case of later versions and the use of Spark Config and Spark Context in case of earlier versions.
his will also help you in understanding how the Spark related environment is set up, concepts of Broadcasting and accumulator, other optimization techniques include those like parallelism, tungsten, and catalyst optimizer.

Requirements

The pre-requisite of these PySpark Tutorials is not much except for that the person should be well familiar and should have a great hands-on experience in any of the languages such as Java, Python or Scala or their equivalent. The other pre-requisites include the development background and the sound and fundamental knowledge of big data concepts and ecosystem as Spark API is based on top of big data Hadoop only. Others include the knowledge of real-time streaming and how big data works along with a sound knowledge of analytics and the quality of prediction related to the machine learning model.

Description

This module on PySpark Tutorials aims to explain the intermediate concepts such as those like the use of Spark session in case of later versions and the use of Spark Config and Spark Context in case of earlier versions. This will also help you in understanding how the Spark-related environment is set up, concepts of Broadcasting and accumulator, other optimization techniques include those like parallelism, tungsten, and catalyst optimizer. You will also be taught about the various compression techniques such as Snappy and Zlib. We will also understand and talk about the various Big data ecosystem related concepts such as HDFS and block storage, various components of Spark such as Spark Core, Mila, GraphX, R, Streaming, SQL, etc. and will also study the basics of Python language which is related and relevant to be used along with Apache Spark thereby making it Pyspark. We will learn the following in this course:

Regression

Linear Regression

Output Column

Test Data

Prediction

Generalized Linear Regression

Forest Regression

Classification

Binomial Logistic Regression

Multinomial Logistic Regression

Decision Tree

Random Forest

Clustering

K-Means Model

Pyspark is a big data solution that is applicable for real-time streaming using Python programming language and provides a better and efficient way to do all kinds of calculations and computations. It is also probably the best solution in the market as it is interoperable i.e. Pyspark can easily be managed along with other technologies and other components of the entire pipeline. The earlier big data and Hadoop techniques included batch time processing techniques.

Pyspark is an open-source program where all the codebase is written in Python which is used to perform mainly all the data-intensive and machine learning operations. It has been widely used and has started to become popular in the industry and therefore Pyspark can be seen replacing other spark based components such as the ones working with Java or Scala. One unique feature which comes along with Pyspark is the use of datasets and not data frames as the latter is not provided by Pyspark. Practitioners need more tools that are often more reliable and faster when it comes to streaming real-time data. The earlier tools such as Map-reduce made use of the map and the reduce concepts which included using the mappers, then shuffling or sorting and then reducing them into a single entity. This MapReduce provided a way of parallel computation and calculation. The Pyspark makes use of in-memory techniques that don't make use of the space storage being put into the hard disk. It provides a general-purpose and a faster computation unit.
Who this course is for:

The target audience for these PySpark Tutorials includes ones such as the developers, analysts, software programmers, consultants, data engineers, data scientists , data analysts, software engineers, Big data programmers, Hadoop developers. Other audience includes ones such as students and entrepreneurs who are looking to create something of their own in the space of big data.
Screenshots

PySpark  for Data Science - Intermediate 55cfb67066d441c2e0931c27dc91c03b

DOWNLOAD:
Citación :

https://rapidgator.net/file/a13b10b1b7f74777714b1ade80434623/3g0hj.PySpark.for.Data.Science..Intermediate.part1.rar.html
https://rapidgator.net/file/26767e654c35524806b6773b766197dd/3g0hj.PySpark.for.Data.Science..Intermediate.part2.rar.html


https://uploadgig.com/file/download/34De70de50174397/3g0hj.PySpark.for.Data.Science..Intermediate.part1.rar
https://uploadgig.com/file/download/E648d2A18Ffabe91/3g0hj.PySpark.for.Data.Science..Intermediate.part2.rar


https://nitroflare.com/view/A57DDCEE8F84154/3g0hj.PySpark.for.Data.Science..Intermediate.part1.rar
https://nitroflare.com/view/12D0AAC46A60A76/3g0hj.PySpark.for.Data.Science..Intermediate.part2.rar

Volver arriba Ir abajo
 

PySpark for Data Science - Intermediate

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Mastering Big Data Analytics with PySpark
» PySpark for Data Science - Advanced
» PySpark for Data Science - Beginners
» Best Hands-On Big Data Practices With Pyspark & Spark Tuning
» Complete PySpark & Google Colab Primer For Data Science

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-