Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
tano1221
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
ПΣӨƧӨFƬ
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
大†Shinegumi†大
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
ℛeℙ@¢ᴋ€r
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
ronaldinho424
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
Engh3
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
geodasoft
Deep  Learning for NLP - Part 5 Vote_lcapDeep  Learning for NLP - Part 5 Voting_barDeep  Learning for NLP - Part 5 Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» High-Logic FontCreator Pro 15.0.0.3011
Deep  Learning for NLP - Part 5 EmptyHoy a las 11:38 pm por ℛeℙ@¢ᴋ€r

» Bandicam 8.0.0.2509 (x64) Multilingual
Deep  Learning for NLP - Part 5 EmptyHoy a las 8:49 pm por 大†Shinegumi†大

» SkinFiner 5.3.3 Multilingual
Deep  Learning for NLP - Part 5 EmptyHoy a las 8:47 pm por 大†Shinegumi†大

» Focus Magic v6.23 (x64) Multilingual
Deep  Learning for NLP - Part 5 EmptyHoy a las 8:44 pm por 大†Shinegumi†大

» FliFlik UltConv Video Converter 5.1.0
Deep  Learning for NLP - Part 5 EmptyHoy a las 8:40 pm por 大†Shinegumi†大

» DVDFab 13.0.3 (x64) Multilingual
Deep  Learning for NLP - Part 5 EmptyHoy a las 8:35 pm por 大†Shinegumi†大

» Ashampoo UnInstaller 15.00.22 Multilingual
Deep  Learning for NLP - Part 5 EmptyHoy a las 8:30 pm por 大†Shinegumi†大

» ⭐️ BackUp Maker Professional 8.310 Multilingual✅
Deep  Learning for NLP - Part 5 EmptyHoy a las 8:21 pm por 大†Shinegumi†大

» CyberLink PowerDirector Ultimate 2025 v23.0 (build 1113)(x64) [Multi]
Deep  Learning for NLP - Part 5 EmptyHoy a las 7:57 pm por Engh3

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Deep Learning for NLP - Part 5

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78133
Fecha de inscripción : 20/08/2016

Deep  Learning for NLP - Part 5 Empty
MensajeTema: Deep Learning for NLP - Part 5   Deep  Learning for NLP - Part 5 EmptyVie Ago 13, 2021 9:31 am

Deep  Learning for NLP - Part 5 81780742efa749d4092957813e6fa263
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.56 GB | Duration: 3h 31m

What you'll learn
Deep Learning for Natural Language Processing
Efficient Transformer Models: Star Transformers, Sparse Transformers, Reformer, Longformer, Linformer, Synthesizer
Efficient Transformer Models: ETC (Extended Transformer Construction), Big bird, Linear attention Transformer, Performer, Sparse Sinkhorn Transformer, Routing transformers
Efficient Transformer benchmark: Long Range Arena
Comparison of various efficient Transformer methods
DL for NLP
Requirements
Basics of machine learning
Basic understanding of Transformer based models and word embeddings
Description
This course is a part of "Deep Learning for NLP" Series. In this course, I will talk about various design schemes for efficient Transformer models. These techniques will come in very handy for academic as well as industry participants. For industry use cases, Transformer models have been shown to lead to very high accuracy values across many NLP tasks. But they have quadratic memory as well as computational complexity making it very difficult to ship them. Thus, this course which focuses on methods to make Transformers efficient is very critical for anyone who wants to ship Transformer models as part of their products.

Time and activation memory in Transformers grows quadratically with the sequence length. This is because in every layer, every attention head attempts to come up with a transformed representation for every position by "paying attention" to tokens at every other position. Quadratic complexity implies that practically the maximum input size is rather limited. Thus, we cannot extract semantic representation for long documents by passing them as input to Transformers. Hence, in this module we will talk about methods to address this challenge.

The course consists of two main sections as follows. In the two sections, I will talk about Efficient Transformer Models, Efficient Transformer benchmark and a Comparison of various efficient Transformer methods.

In the first section, I will talk about methods like Star Transformers, Sparse Transformers, Reformer, Longformer, Linformer, Synthesizer.

In the second section, I will talk about methods like ETC (Extended Transformer Construction), Big bird, Linear attention Transformer, Performer, Sparse Sinkhorn Transformer, Routing transformers. Long Range Arena is a recent benchmark for evaluating models on long sequence tasks with respect to accuracy, memory usage and inference time. We will discuss details about long range arena and finally wrap up with a philosophical categorization of various efficient Transformer methods.

For each method, we will discuss specific scheme for optimization, architecture and results obtained for pretraining as well as downstream tasks.

Who this course is for:
Beginners in deep learning
Python developers interested in data science concepts
Masters or PhD students who wish to learn deep learning concepts quickly
Folks wanting to ship their products across regions and languages (internationalization of their learning/predictive/generative models)

Screenshots

Deep  Learning for NLP - Part 5 4f1a877a3cc93625a87675fe9c70eca8

DOWNLOAD:
Citación :

https://rapidgator.net/file/06bd5b215f2947b0f56c6139678f73b5/bfb9c.Deep.Learning.for.NLP..Part.5.part1.rar.html
https://rapidgator.net/file/8a5d189af1656b89e0b75e1fc2de2c36/bfb9c.Deep.Learning.for.NLP..Part.5.part2.rar.html


https://uploadgig.com/file/download/0FF220712a8900c7/bfb9c.Deep.Learning.for.NLP..Part.5.part1.rar
https://uploadgig.com/file/download/E5dbaab4480267c0/bfb9c.Deep.Learning.for.NLP..Part.5.part2.rar


https://nitroflare.com/view/A9659BA530D4793/bfb9c.Deep.Learning.for.NLP..Part.5.part1.rar
https://nitroflare.com/view/E6F7728CC382E1E/bfb9c.Deep.Learning.for.NLP..Part.5.part2.rar

Volver arriba Ir abajo
 

Deep Learning for NLP - Part 5

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Deep Learning for NLP - Part 1
» Deep Learning for NLP - Part 3
» Deep Learning for NLP - Part 2
» Deep Learning for NLP - Part 6
» Deep Learning for NLP - Part 4

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-