Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Data Analytics Literacy / Data Science Literacy  (Path) Vote_lcapData Analytics Literacy / Data Science Literacy  (Path) Voting_barData Analytics Literacy / Data Science Literacy  (Path) Vote_rcap 
tano1221
Data Analytics Literacy / Data Science Literacy  (Path) Vote_lcapData Analytics Literacy / Data Science Literacy  (Path) Voting_barData Analytics Literacy / Data Science Literacy  (Path) Vote_rcap 
ПΣӨƧӨFƬ
Data Analytics Literacy / Data Science Literacy  (Path) Vote_lcapData Analytics Literacy / Data Science Literacy  (Path) Voting_barData Analytics Literacy / Data Science Literacy  (Path) Vote_rcap 
ℛeℙ@¢ᴋ€r
Data Analytics Literacy / Data Science Literacy  (Path) Vote_lcapData Analytics Literacy / Data Science Literacy  (Path) Voting_barData Analytics Literacy / Data Science Literacy  (Path) Vote_rcap 
大†Shinegumi†大
Data Analytics Literacy / Data Science Literacy  (Path) Vote_lcapData Analytics Literacy / Data Science Literacy  (Path) Voting_barData Analytics Literacy / Data Science Literacy  (Path) Vote_rcap 
Engh3
Data Analytics Literacy / Data Science Literacy  (Path) Vote_lcapData Analytics Literacy / Data Science Literacy  (Path) Voting_barData Analytics Literacy / Data Science Literacy  (Path) Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Macrium Reflect X 10.0.8366 (Workstation/Server/Server Plus) + WinPE / WinRE (x64)
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Light Image Resizer 7.1.0.58 Multilingual
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 1:46 pm por ПΣӨƧӨFƬ

» Perfectly Clear WorkBench 4.6.1.2706 (x64) Multilingual
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 1:42 pm por ПΣӨƧӨFƬ

» SkinFiner 5.3.2 (x64) Multilingual
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 1:31 pm por ℛeℙ@¢ᴋ€r

» IObit Uninstaller Pro 14.0.1.19 Multilingual
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 1:15 pm por ℛeℙ@¢ᴋ€r

» Notepad++ 8.7.1 Dual x86x64 [Desatendido]Multi
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 1:06 pm por ℛeℙ@¢ᴋ€r

» ⭐️ LightPDF Editor 2.14.13.4 Build 31⁄10⁄2024 Multilingual
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 12:53 pm por tano1221

» Yamicsoft Windows Manager 2.0.7 (x64) Multilingual
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 12:39 pm por tano1221

» Social Media Downloader 7.3
Data Analytics Literacy / Data Science Literacy  (Path) EmptyHoy a las 12:33 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Data Analytics Literacy / Data Science Literacy (Path)

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 77064
Fecha de inscripción : 20/08/2016

Data Analytics Literacy / Data Science Literacy  (Path) Empty
MensajeTema: Data Analytics Literacy / Data Science Literacy (Path)   Data Analytics Literacy / Data Science Literacy  (Path) EmptyMar Oct 04, 2022 5:31 am


Data Analytics Literacy / Data Science Literacy  (Path) 9ed5e20cdbccd51309542387a8c1c1f6

Janani Ravi (et al.) | Duration: 22:00 h | Video: H264 1280x720 | Audio: AAC 48 kHz 2ch | 2,81 GB | Language: English

Data Analytics is the detection, interpretation, and communication of meaningful patterns in data.
Data science is a diverse field where scientific methods, software programming, and data analytics combine to glean insights from data, communicate those insights, and empower a business to take appropriate actions.
This skill path provides foundational knowledge behind data science, specifically with its application in Microsoft Azure.
What you will learn
• Describe the general analytics workflow
• Differentiate data types and identify analyses suitable for specific types of data
• Determine which analysis is appropriate for a specific business problem
• Apply hypothesis testing to a new business problem
• Describe the key components of an RDBMS (Relational Database Management System) architecture query and process data using OLTP (Online Transactional Processing) systems write portable SQL queries against data define schemas describe common database programming constructs (stored procedures, triggers, views, etc)
• Describe the components of an OLAP (Online Analytical Processing) system differentiate tabular vs cube data models writing analytical queries working with nested/repeated data dealing with streaming data in an OLAP context
• Describe the components of a NoSQL (Not Only SQL) database
• Differentiate columnar/wide-column databases vs document databases
• Identify when each is appropriate
• Describe common methods for getting data in and out of systems - scripting (including specialty languages such as Pig), bulk loading, streaming inserts
• Compare and contrast the ETL (extract, transform, and load) workflow with the LET workflow (load, extract, and transform)
• Describe the "four v's" of Big Data and how they are used to differentiate Big Data problems from "small data"
• Describe the pros and cons of using cloud vs on-premise solutions for data management
• Describe the pros and cons of using "handrolled" Hadoop/Hive/Spark vs proprietary systems like Teradata/Oracle
• Identify key decision factors between services on AWS, Azure, GCP etc
• Describe the general analytics workflow
• Differentiate data types and identify analyses suitable for specific types of data
• Determine which analysis is appropriate for a specific business problem
• Apply hypothesis testing to a new business problem
• Describe the key components of an RDBMS (Relational Database Management System) architecture query and process data using OLTP (Online Transactional Processing) systems
• Write portable SQL queries against data
• Define schemas
• Describe common database programming constructs (stored procedures, triggers, views, etc)
• Describe the components of an OLAP (Online Analytical Processing) system
• Differentiate tabular vs cube data models
• Writing analytical queries
• Working with nested/repeated data
• Dealing with streaming data in an OLAP context
• Describe the components of a NoSQL (Not Only SQL) database
• Differentiate columnar/wide-column databases vs document databases
• Identify when each is appropriate
• Describe common methods for getting data in and out of systems - scripting (including specialty languages such as Pig), bulk loading, streaming inserts
• Compare and contrast the ETL (extract, transform, and load) workflow with the LET workflow (load, extract, and transform)
• Describe the "four v's" of Big Data and how they are used to differentiate Big Data problems from "small data"
• Describe the pros and cons of using cloud vs on-premise solutions for data management
• Describe the pros and cons of using "handrolled" Hadoop/Hive/Spark vs proprietary systems like Teradata/Oracle
• Identify key decision factors between services on AWS, Azure, GCP, etc.
Corses included
A. Beginner
Learn fundamental objectives around representing, processing, and shaping data for analysis.
A1. Representing, Processing, and Preparing Data (Janani Ravi, 2019)
A2. Combining and Shaping Data (Janani Ravi, 2020)
B. Intermediate
Learn to apply descriptive statistics to data, and design experiments to further your analysis.
B1. Summarizing Data and Deducing Probabilities (Janani Ravi, 2021)
B2. Experimental Design for Data Analysis (Janani Ravi, 2019)
C. Advanced
Learn to apply common statistical models to business problems, and to recognize factors that impact your communication of findings.
C1. Interpreting Data with Statistical Models (Axel Sirota, 2020)
C2. Communicating Data Insights (Janani Ravi, 2020)
D. Advanced+
This part of the skill helps you apply statistical models to business problems, and to identify and mitigate factors that impact your models.
D1. Interpreting Data with Advanced Statistical Models (Axel Sirota, 2019)
D2. Building, Training, and Validating Models in Microsoft Azure (Bismark Adomako, 2020)

Data Analytics Literacy / Data Science Literacy  (Path) 5bc4550a8f50786241271121d56fc7f4

Download link

rapidgator.net:
Código:

https://rapidgator.net/file/f06411f181d2cebe8557ecd11e4a655b/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part1.rar.html
https://rapidgator.net/file/d55d316f35cc38566e2029f66708aac1/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part2.rar.html

uploadgig.com:
Código:

https://uploadgig.com/file/download/504c837dec527395/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part1.rar
https://uploadgig.com/file/download/5eDe030d25e9C7a3/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part2.rar

nitroflare.com:
Código:

https://nitroflare.com/view/1008D7D4E9A7A07/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part1.rar
https://nitroflare.com/view/CDB7F4C30C84B05/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part2.rar

1dl.net:
Código:

https://1dl.net/39u1onjoo4qr/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part1.rar.html
https://1dl.net/xqkw2e9sklzy/jpgbe.Data.Analytics.Literacy..Data.Science.Literacy.Path.part2.rar.html
Volver arriba Ir abajo
 

Data Analytics Literacy / Data Science Literacy (Path)

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Machine Learning Literacy - Practical Application (Path)
» Data Literacy: Understanding Data Warehousing with Azure
» Data Literacy : Essentials of Azure Data Studio
» Data Literacy: Understanding Data Warehousing with Azure
» Practical Data Literacy For Leaders

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-