Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Explore  Sklearn Vote_lcapExplore  Sklearn Voting_barExplore  Sklearn Vote_rcap 
tano1221
Explore  Sklearn Vote_lcapExplore  Sklearn Voting_barExplore  Sklearn Vote_rcap 
ПΣӨƧӨFƬ
Explore  Sklearn Vote_lcapExplore  Sklearn Voting_barExplore  Sklearn Vote_rcap 
大†Shinegumi†大
Explore  Sklearn Vote_lcapExplore  Sklearn Voting_barExplore  Sklearn Vote_rcap 
ℛeℙ@¢ᴋ€r
Explore  Sklearn Vote_lcapExplore  Sklearn Voting_barExplore  Sklearn Vote_rcap 
Engh3
Explore  Sklearn Vote_lcapExplore  Sklearn Voting_barExplore  Sklearn Vote_rcap 
ronaldinho424
Explore  Sklearn Vote_lcapExplore  Sklearn Voting_barExplore  Sklearn Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Native Instruments Traktor Pro v4.1.0
Explore  Sklearn EmptyHoy a las 2:50 pm por missyou123

» Muziza YouTube Downloader Converter 8.9
Explore  Sklearn EmptyHoy a las 2:47 pm por missyou123

» Mozilla Thunderbird 128.4.1
Explore  Sklearn EmptyHoy a las 2:45 pm por missyou123

» Mozilla Firefox 132.0.1
Explore  Sklearn EmptyHoy a las 2:43 pm por missyou123

» Movavi Video Editor Plus 2025 v25.0.1 (x64) Multilingual
Explore  Sklearn EmptyHoy a las 2:41 pm por missyou123

» Mossaik XDR Pro 2.3.27
Explore  Sklearn EmptyHoy a las 2:39 pm por missyou123

» Mossaik Presets Pro 2.3.28
Explore  Sklearn EmptyHoy a las 2:37 pm por missyou123

» Mossaik Classic Pro 2.3.28
Explore  Sklearn EmptyHoy a las 2:35 pm por missyou123

» MiniMeters 0.8.13 Beta (Win/macOS/Linux)
Explore  Sklearn EmptyHoy a las 2:33 pm por missyou123

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Explore Sklearn

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 77021
Fecha de inscripción : 21/08/2016

Explore  Sklearn Empty
MensajeTema: Explore Sklearn   Explore  Sklearn EmptyLun Oct 17, 2022 6:17 pm


Explore  Sklearn 424f4a421f8bfa680a0e2381e5fcee57

Explore Sklearn
Published 10/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.90 GB | Duration: 6h 16m

to develop machine learning skills

What you'll learn
Students will learn about sklearn, Python's machine learning library
Students will learn about and go over the code of supervised learning classification and regression problems
Students will learn about and go over the code of semi-supervised classification and regression problems
Students will learn about and go over the code of unsupervised regression problems
Students will learn about and go over the code of principal component analysis
Students will learn about and go over the code of feature selection techniques
Requirements
Basic Python programming is a prerequisite to this course
Description
This course is intended to give the student an overview of Python's machine learning library, sklearn. The course is broken down into seven sections, being:-1. Introduction2. Supervised learning3. Semi-supervised learning4. Unsupervised learning5. Dimensionality reduction6. Feature selection7. Other topicsThe student will receive extensive guidance on how to use sklearn. Sklearn's search engine will be used to research sklearn's many functions, which include:-1. Preprocessing functions2. Classification models3. Regression models4. Semi-supervision models5. Clustering models6. Dimensionality reduction functions7. Feature selection functions8. Metrics functionsIn addition to learning about the numerous and varied types of functions in sklearn, The student will go over the code of twelve Jupyter Notebooks. The subject matter of these notebooks are:-1. Supervised classification problems2. Supervised regression problems3. Semi-supervised classification problems4. Semi-supervised regression problems5. Unsupervised classification problems6. Dimensionality reduction7. Feature selection by selecting the best features 8. Feature selection by selecting a percentage of the best features9. Logistic regression versus decision tree 10. The machine learning life cycleThe student will, using sklearn and other coding, cover the entire machine learning life cycle from the beginning to the end. This will cover:-1. Creating a Jupyter Notebook in Google Colab2. Importing Python libraries into the Jupyter Notebook3. Loading the dataset from either sklearn, openml, or Github4. Cleaning the data by taking care of any null values5. Encoding the data to covert object features to numeric features6. Using visualisation techniques to analyse the data7. Removing any outliers from regression models where necessary8. Removing any feastures that have a high correlation where necessary9. Reducing the dimensionality of a dataset where necessary10. Reducing the features of a dataset where necessary11. Assigning dependent and independent variables12. Splitting the dataset into training and validation sets where necessary13. Selecting the most appropriate model14. making predictions on the model15. Analysing the accuracy of the model by using metric functions
Overview
Section 1: Introduction
Lecture 1 Introduction
Lecture 2 Introduction to sklearn
Section 2: Supervised learning
Lecture 3 Sklearn classification models
Lecture 4 Supervised classification
Lecture 5 Sklearn regression models
Lecture 6 Supervised regression
Section 3: Semi-supervised learning
Lecture 7 Sklearn semi-supervised models
Lecture 8 Sklearn semi-supervised functions
Lecture 9 Semi-supervised classification
Lecture 10 Semi-supervised regression
Section 4: Unsupervised learning
Lecture 11 Sklearn unsupervised models
Lecture 12 Unsupervised breast cancer dataset
Lecture 13 Unsupervised wine dataset
Section 5: Principal component analysis
Lecture 14 Sklearn PCA models
Lecture 15 Principal component analysis
Section 6: Feature selection
Lecture 16 Sklearn feature selection models
Lecture 17 SelectKBest
Lecture 18 SelectPercentile
Section 7: Other machine learning topics
Lecture 19 Logistic Regression versus Decision Tree
Lecture 20 Machine learning life cycle
Beginner Python developers who would like to learn machine learning techniques

Explore  Sklearn 31ebbe1510f85d32fa07148d84e87fe6

Download link

rapidgator.net:
Código:

https://rapidgator.net/file/4b99b679afba77ee7ab6cc51987c2d5b/srpvq.Explore.Sklearn.part1.rar.html
https://rapidgator.net/file/d1b7e7bc4bd898b1e75cf69b3b23c01c/srpvq.Explore.Sklearn.part2.rar.html
https://rapidgator.net/file/9b136fffa7bdc8b7118ee6787e30a236/srpvq.Explore.Sklearn.part3.rar.html

uploadgig.com:
Código:

https://uploadgig.com/file/download/81934f9AD576Ad35/srpvq.Explore.Sklearn.part1.rar
https://uploadgig.com/file/download/92c69Ca689ae0e57/srpvq.Explore.Sklearn.part2.rar
https://uploadgig.com/file/download/93108e60d8adb6CD/srpvq.Explore.Sklearn.part3.rar

nitroflare.com:
Código:

https://nitroflare.com/view/F564D001D6F0650/srpvq.Explore.Sklearn.part1.rar
https://nitroflare.com/view/D25EC98F8414103/srpvq.Explore.Sklearn.part2.rar
https://nitroflare.com/view/2ABC33A2A99260A/srpvq.Explore.Sklearn.part3.rar

1dl.net:
Código:

https://1dl.net/3ifh4i1ly3gm/srpvq.Explore.Sklearn.part1.rar.html
https://1dl.net/9w9t6t678her/srpvq.Explore.Sklearn.part2.rar.html
https://1dl.net/7a3b268wo7f2/srpvq.Explore.Sklearn.part3.rar.html
Volver arriba Ir abajo
En línea
 

Explore Sklearn

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Hey Bro, Let'S Explore The Arabic Language Together
» Explore the world of English grammar
» Explore Your Personal History: Through Memoir Documentation
» Australian Culture Explained: Explore The Land Down Under
» Autonomous Ai Agents Masterclass -Explore Generative Ai Era

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-