Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
tano1221
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
ПΣӨƧӨFƬ
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
大†Shinegumi†大
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
ℛeℙ@¢ᴋ€r
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
ronaldinho424
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
Engh3
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
geodasoft
Create & Deploy Data Science,Deep Learning Web Apps  2021 Vote_lcapCreate & Deploy Data Science,Deep Learning Web Apps  2021 Voting_barCreate & Deploy Data Science,Deep Learning Web Apps  2021 Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 8:05 pm por 大†Shinegumi†大

» Skylum Luminar Neo v1.22.0 (14095) (x64) Multilingual
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 8:04 pm por 大†Shinegumi†大

»  Luxion KeyShot Studio Enterprise 2024.3 v13.2.0.184 Multilingual (x64)
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 7:59 pm por 大†Shinegumi†大

» Ashampoo Snap 16.0.9 (x64) Multilingual
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 7:55 pm por 大†Shinegumi†大

» CodeSector Direct Folders Pro v4.3.2
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 7:54 pm por 大†Shinegumi†大

» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyHoy a las 1:14 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Create & Deploy Data Science,Deep Learning Web Apps 2021

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

Create & Deploy Data Science,Deep Learning Web Apps  2021 Empty
MensajeTema: Create & Deploy Data Science,Deep Learning Web Apps 2021   Create & Deploy Data Science,Deep Learning Web Apps  2021 EmptyMar Nov 22, 2022 5:58 am


Create & Deploy Data Science,Deep Learning Web Apps  2021 271afe42adda6996e24555b8ae446c15

Last updated 8/2021
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.21 GB | Duration: 2h 46m

Learn development & deployment of machine learning and deep learning application projects with python on heruko

What you'll learn
Build Deep Learning Models
Deployment Of Deep Learning Applications
Deep Learning Practical Applications
How to use DEEP NEURAL NETWORKS for image classification
How to use ARTIFICIAL NEURAL NETWORKS
Requirements
Knowledge Of Deep Learning
Knowledge Of Machine Learning
Description
Deployment of machine learning models means operationalizing your trained model to fulfill its intended business use case. If your model detects spam emails, operationalizing this model means integrating it into your company's email workflow-seamlessly. So, the next time you receive spam emails, it'll be automatically categorized as such. This step is also known as putting models into production.Machine learning models are deployed when they have been successful in the development stage-where the accuracy is considered acceptable on a dataset not used for development (also known as validation data). Also, the known faults of the model should be clearly documented before deployment.Even if your spam detection model has a 98% accuracy it doesn't mean it's perfect. There will always be some rough edges and that information needs to be clearly documented for future improvement. For example, emails with the words "save the date" in the subject line may always result in a spam prediction-even if it isn't. While this is not ideal, deployment with some of these known faults is not necessarily a deal breaker as long as you're able to improve its performance over time.Models can integrate into applications in several ways. One way is to have the model run as a separate cloud service. Applications that need to use the model can access it over a network. Another way is to have the model tightly integrated into the application itself. In this case, it will share a lot of the same computing resources.How the model integrates within your business systems requires careful planning. This should ideally happen before any development begins. The setup of the problem you are trying to solve and constraints under which models need to operate will dictate the best deployment strategy.For example, in detecting fraudulent credit card transactions, we need immediate confirmation on the legitimacy of a transaction. You can't have a model generate a prediction sometime today only to be available tomorrow. With such a time constraint, the model needs to be tightly integrated into the credit card processing application and be able to instantaneously deliver predictions. If over a network, it should incur very minimal network latency.For some applications, time is not of the essence. So we can wait for a certain amount of data to "pile up" before the machine learning model is run on that data. This is referred to as batch processing. For example, the recommendations you see from a shopping outlet may stay the same for a day or two. This is because the recommendations are only periodically "refreshed." Even if the machine learning models are sluggish, it doesn't have a big impact as long the recommendations are refreshed within the expected time range.
Overview
Section 1: Introduction
Lecture 1 Introduction To The Course
Lecture 2 Udemy Course Feedback
Section 2: Pan Card Tempering Detector
Lecture 3 Introduction To Pan Card Tempering Detector
Lecture 4 Download the code
Lecture 5 Loading libraries and dataset
Lecture 6 Creating the pancard detector with opencv
Lecture 7 Creating the Flask App
Lecture 8 Creating Important functions
Lecture 9 Deploy the app in Heruko
Lecture 10 Deploy the app in Heruko 2
Lecture 11 Testing the deployed pan card detector
Section 3: Project On Image Watermarking
Lecture 12 Introduction
Lecture 13 Download the code
Lecture 14 Importing libraries and logo
Lecture 15 Create text and image watermark
Lecture 16 Creating the app
Lecture 17 Deploying the app in heruko
Section 4: Project On Text Extraction From Images
Lecture 18 Introduction
Lecture 19 Importing libraries and data
Lecture 20 Extracting the test from image
Lecture 21 Modifiying the extractor
Lecture 22 creating the extractor app
Lecture 23 running the extractor app
Lecture 24 Download the code
Section 5: Project On Plant Disease Prediction
Lecture 25 Introduction
Lecture 26 Importing libraries and data
Lecture 27 Understanding the data and data preprocessing
Lecture 28 Model building
Lecture 29 Creating an app using streamlit
Lecture 30 Download the code
Section 6: Project On Counting & Detecting Vehicles
Lecture 31 Introduction
Lecture 32 Importing libraries and data
Lecture 33 Transforming Images and creating output
Lecture 34 Creating a flask APP
Lecture 35 Download the code
Beginners In Machine Learning

Create & Deploy Data Science,Deep Learning Web Apps  2021 D323020fd99114cb86e5f51a0b568637

Download link

rapidgator.net:
Código:

https://rapidgator.net/file/ddb95f99e6a98817ee85981a1203ea7a/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part1.rar.html
https://rapidgator.net/file/35a12af1f30318a8624e4ceb1aadbf7f/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part2.rar.html

uploadgig.com:
Código:

https://uploadgig.com/file/download/c456E2832B967a24/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part1.rar
https://uploadgig.com/file/download/fDA25Edd760803b8/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part2.rar

nitroflare.com:
Código:

https://nitroflare.com/view/352F447DC5DF1A4/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part1.rar
https://nitroflare.com/view/44E4AB0A72765D7/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part2.rar

1dl.net:
Código:

https://1dl.net/g0mrurdslqiq/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part1.rar.html
https://1dl.net/3v6nar373ut2/hgblo.Create..Deploy.Data.ScienceDeep.Learning.Web.Apps.2021.part2.rar.html
Volver arriba Ir abajo
 

Create & Deploy Data Science,Deep Learning Web Apps 2021

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Create Deep Learning Computer Vision Apps using Python 2020
» Docker to Amazon AWS Deploy Java & .NET Apps with Travis CI
» Develop & Deploy Mobile Apps with React Native & Expo
» Deploy Java Spring Apps Online to Amazon Cloud (AWS) [Updated]
» Machine Learning & Data Science Bootcamp with R & Python (07/2021)

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-