Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
tano1221
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
ПΣӨƧӨFƬ
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
大†Shinegumi†大
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
ℛeℙ@¢ᴋ€r
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
ronaldinho424
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
Engh3
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
geodasoft
Random Forest using R - Prediction of Employee  Attrition Vote_lcapRandom Forest using R - Prediction of Employee  Attrition Voting_barRandom Forest using R - Prediction of Employee  Attrition Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Transmit 5.10.6 macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:14 pm por missyou123

» TinkerTool System 8.97 (241121) macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:12 pm por missyou123

» TBProAudio CS5501V2 v2.9.5 U2B macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:10 pm por missyou123

» Sync Folders Pro 4.7.6 macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:08 pm por missyou123

» SiteSucker Pro 5.5.0 macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:06 pm por missyou123

» SiteSucker 5.5.0 macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:04 pm por missyou123

» Pulsar Modular P440 Sweet Spot v2.0.9 U2B macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:02 pm por missyou123

» Pixelmator Pro 3.6.13 macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 12:00 pm por missyou123

» Perfectly Clear WorkBench 4.6.1.2707 macOS
Random Forest using R - Prediction of Employee  Attrition EmptyHoy a las 11:57 am por missyou123

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Random Forest using R - Prediction of Employee Attrition

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78712
Fecha de inscripción : 21/08/2016

Random Forest using R - Prediction of Employee  Attrition Empty
MensajeTema: Random Forest using R - Prediction of Employee Attrition   Random Forest using R - Prediction of Employee  Attrition EmptyJue Nov 02, 2023 7:09 pm


Random Forest using R - Prediction of Employee  Attrition 161efead357a65ad6192cfbef87dab0d

Random Forest using R - Prediction of Employee Attrition
Published 10/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 37m | Size: 742 MB
Learn Random Forest using R and Predict Employee Attrition using a case study

What you'll learn
Extracting the Data to the platform and Apply data Transformation.
Bifurcate Data into Training and Testing Data set and build Random Forest Model on Training Data set.
Predict using Testing Data set and Validate the Model Performance.
Improve the model Performance using Random Forest and Predict and Validate Performance of Model.
Requirements
Basic Machine learning concepts and Python.
Description
Random forest in Python offers an accurate method of predicting results using subsets of data, split from global data set, using multi-various conditions, flowing through numerous decision trees using the available data on hand and provides a perfect unsupervised data model platform for both Classification or Regression cases as applicable; It handles high dimensional data without the need any pre-processing or transformation of the initial data and allows parallel processing for quicker results. The unique feature of Random forest is supervised learning. What it means is that data is segregated into multiple units based on conditions and formed as multiple decision trees. These decision trees have minimal randomness (low Entropy), neatly classified and labeled for structured data searches and validations. Little training is needed to make the data models active in various decision trees.
The success of Random forest depends on the size of the data set. More the merrier. The big volume of data leads to accurate prediction of search results and validations. The big volume of data will have to be logically split into subsets of data using conditions exhaustively covering all attributes of data.
Decision trees will have to be built using these sub-sets of data and conditions enlisted. These trees should have enough depth to have the nodes with minimal or nil randomness and their Entropy should reach zero. Nodes should bear labels clearly and it should be an easy task to run through nodes and validate any data.
We need to build as many decision trees as possible with clearly defined conditions, and true or false path flow. The end nodes in any decision tree should lead to a unique value. Each and every decision tree is trained and the results are obtained. Random forest is known for its ability to return accurate results even in case of missing data due to its robust data model and sub-set approach.
Any search or validation should cover all the decision trees and the results are summed up. If any data is missing the true path of that condition is assumed and the search flow continues till all the nodes are consumed. The majority value of the results is assumed in the case of the classification method and the average value is taken as a result in the case of the regression method.
Who this course is for
Aspiring Data Scientists
Artificial Intelligence/Machine Learning/ Engineers

Screenshots

Random Forest using R - Prediction of Employee  Attrition 8e5c73ae7a22da8924ef0d0e719bfe5f

Download link

rapidgator.net:
Código:

https://rapidgator.net/file/754f72e62fcdbb0bd57de7ee26eec893/dvnhv.Random.Forest.using.R..Prediction.of.Employee.Attrition.rar.html

uploadgig.com:
Código:

https://uploadgig.com/file/download/56A5a2520496951c/dvnhv.Random.Forest.using.R..Prediction.of.Employee.Attrition.rar

nitroflare.com:
Código:

https://nitroflare.com/view/48DDE4A23D697C4/dvnhv.Random.Forest.using.R..Prediction.of.Employee.Attrition.rar
Volver arriba Ir abajo
En línea
 

Random Forest using R - Prediction of Employee Attrition

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Random Forest Algorithm using Python
» Random Forest Algorithm in Machine Learning
» Random Forest, Adaboost & Decision Trees in Machine Learning
» Build employee retention and reduce annual employee turnover
» Time Series Analysis With Ms Excel - Attrition Patterns

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-