Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
tano1221
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
ПΣӨƧӨFƬ
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
大†Shinegumi†大
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
ℛeℙ@¢ᴋ€r
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
ronaldinho424
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
Engh3
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
geodasoft
Deep Learning Image Classification in  PyTorch 2.0 Vote_lcapDeep Learning Image Classification in  PyTorch 2.0 Voting_barDeep Learning Image Classification in  PyTorch 2.0 Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Zoho Books Accounting Software (2024)
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:57 am por missyou123

» Work-Life Balance In Healthcare
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:55 am por missyou123

» Vigilant Leadership Mastering The Art Of Strategic Foresight
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:53 am por missyou123

» Unlearn To Grow
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:51 am por missyou123

» Tips To Balancing Work And Life - 2 Course Bundle
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:49 am por missyou123

» TikTok Shop GMV Max Beta Ads Course
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:47 am por missyou123

» The Creative Travel Method
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:45 am por missyou123

» System Recon with Kali Linux
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:43 am por missyou123

» Surviving a School Shooting - Active Shooter
Deep Learning Image Classification in  PyTorch 2.0 EmptyHoy a las 10:41 am por missyou123

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Deep Learning Image Classification in PyTorch 2.0

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

Deep Learning Image Classification in  PyTorch 2.0 Empty
MensajeTema: Deep Learning Image Classification in PyTorch 2.0   Deep Learning Image Classification in  PyTorch 2.0 EmptyMar Nov 14, 2023 3:17 am


Deep Learning Image Classification in  PyTorch 2.0 515a0a6dc09929405514d56c195f20cf

Deep Learning Image Classification in PyTorch 2.0
Published 11/2023
Created by Pooja Dhouchak,FatheVision AI
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 31 Lectures ( 4h 26m ) | Size: 3.3 GB

Deep Learning | Computer Vision | Image Classification Model Training and Testing | PyTorch 2.0 | Python3

What you'll learn
Learn to prepare an image classification dataset.
Learn to process the dataset by using image_folder and by extending the dataset class from torchvision.
Learn to prepare and test the data pipeline.
Learning about Data augmentation such as resize, cropping, ColorJitter, RandomHorizontalflip, RandomVerticalFlip, RandomRotation.
Understanding the detail architecture of LeNet, VGG16, Inception v3, and ResNet50 with complete block diagram.
Learn to train the model on less data through transfer learning.
Learning about training pipeline to train any image classification model.
Learning about inference pipeline to display the result.
Learning about evalution process of image classification model through Precision, Recall, F1 Score, and Accuracy.
Requirements
Basic knowledge of Python
Access to internet connection
Basic understanding of CNNs
Description
Welcome to this Deep Learning Image Classification course with PyTorch2.0 in Python3. Do you want to learn how to create powerful image classification recognition systems that can identify objects with immense accuracy? if so, then this course is for you what you need! In this course, you will embark on an exciting journey into the world of deep learning and image classification. This hands-on course is designed to equip you with the knowledge and skills necessary to build and train deep neural networks for the purpose of classifying images using the PyTorch framework.We have divided this course into Chapters. In each chapter, you will be learning a new concept for training an image classification model. These are some of the topics that we will be covering in this course:Training all the models with torch.compile which was introduced recently in Pytroch2.0 as a new feature.Install Cuda and Cudnn libraires for PyTorch2.0 to use GPU. How to use Google Colab Notebook to write Python codes and execute code cell by cell.Connecting Google Colab with Google Drive to access the drive data.Master the art of data preparation as per industry standards. Data processing with torchvision library. data augmentation to generate new image classification data by using:- Resize, Cropping, RandomHorizontalFlip, RandomVerticalFlip, RandomRotation, and ColorJitter.Implementing data pipeline with data loader to efficiently handle large datasets.Deep dive into various model architectures such as LeNet, VGG16, Inception v3, and ResNet50.Each model is explained through a nice block diagram through layer by layer for deeper understanding.Implementing the training and Inferencing pipeline.Understanding transfer learning to train models on less data.Display the model inferencing result back onto the image for visualization purposes. By the end of this comprehensive course, you'll be well-prepared to design and build image classification models using deep learning with PyTorch2.0. These skills will open doors to a wide range of applications, from classifying everyday objects to solving complex image analysis problems in various industries. Whether you're a beginner or an experienced data scientist, this course will equip you with the knowledge and practical experience to excel in the field of deep learning(Computer Vision).Feel Free to message me on the Udemy Ques and Ans board, if you have any queries about this Course. We give you the best reply in the shortest time as soon as possible.Thanks for checking the course Page, and I hope to see you in my course.
Who this course is for
Python developer who is interested in Deep Learning
Deep Learning enthusiasts who wants to understand Architecture of Image Classification Models such ResNet, VGG, LeNet, Inception
Deep Learning enthusiasts who wants to learn new features of PyTorch 2.0.
Deep Learning enthusiasts who is learning Computer Vision and wants to train and evaluate various image classification models
Deep Learning enthusiasts who wants to learn how to build an custom image classification data

Screenshots

Deep Learning Image Classification in  PyTorch 2.0 223017f57b4a35461f9ed764828c4928

Download link

rapidgator.net:
Código:

https://rapidgator.net/file/a5737ee7f8c7f840f3390fd50cdbfdfe/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part1.rar.html
https://rapidgator.net/file/ddf281221d99e8297b1160defb4ade2e/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part2.rar.html
https://rapidgator.net/file/dfbd229af3c6b9064a1032beace1d3ce/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part3.rar.html
https://rapidgator.net/file/cd801f48a4d6d487b516cc152b6b604b/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part4.rar.html

uploadgig.com:
Código:

https://uploadgig.com/file/download/bbeE8A30ddC15aeF/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part1.rar
https://uploadgig.com/file/download/8347862BeE1cc603/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part2.rar
https://uploadgig.com/file/download/70b27aeFa097F8a7/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part3.rar
https://uploadgig.com/file/download/F67Ac2926adFf18a/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part4.rar

ddownload.com:
Código:

https://ddownload.com/4879p1rfcj9e/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part1.rar
https://ddownload.com/inmg80fognii/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part2.rar
https://ddownload.com/aitd7fsagwbs/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part3.rar
https://ddownload.com/vd1xjy4xkw3r/ifekh.Deep.Learning.Image.Classification.in.PyTorch.2.0.part4.rar
Volver arriba Ir abajo
 

Deep Learning Image Classification in PyTorch 2.0

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Deep learning: An Image Classification Bootcamp
» Image Classification with PyTorch
» Deep Learning with PyTorch video edition
» PyTorch Essential Training Deep Learning
» PyTorch Deep Learning and Artificial Intelligence

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-