Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Machine Learning Theory (Basic)  NEW Vote_lcapMachine Learning Theory (Basic)  NEW Voting_barMachine Learning Theory (Basic)  NEW Vote_rcap 
ℛeℙ@¢ᴋ€r
Machine Learning Theory (Basic)  NEW Vote_lcapMachine Learning Theory (Basic)  NEW Voting_barMachine Learning Theory (Basic)  NEW Vote_rcap 
ПΣӨƧӨFƬ
Machine Learning Theory (Basic)  NEW Vote_lcapMachine Learning Theory (Basic)  NEW Voting_barMachine Learning Theory (Basic)  NEW Vote_rcap 
tano1221
Machine Learning Theory (Basic)  NEW Vote_lcapMachine Learning Theory (Basic)  NEW Voting_barMachine Learning Theory (Basic)  NEW Vote_rcap 
大†Shinegumi†大
Machine Learning Theory (Basic)  NEW Vote_lcapMachine Learning Theory (Basic)  NEW Voting_barMachine Learning Theory (Basic)  NEW Vote_rcap 
Engh3
Machine Learning Theory (Basic)  NEW Vote_lcapMachine Learning Theory (Basic)  NEW Voting_barMachine Learning Theory (Basic)  NEW Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» O&O Defrag Professional/Server 29.1.11201 (x64) 
Machine Learning Theory (Basic)  NEW EmptyHoy a las 2:19 pm por ПΣӨƧӨFƬ

» n-Track Studio Suite 10.2.0.9142 Multilingual
Machine Learning Theory (Basic)  NEW EmptyHoy a las 2:13 pm por ПΣӨƧӨFƬ

» LibRaw RawDigger v1.4.9.821 (Profile Edition)
Machine Learning Theory (Basic)  NEW EmptyHoy a las 2:12 pm por ПΣӨƧӨFƬ

» FinePrint 12.08 Multilingual
Machine Learning Theory (Basic)  NEW EmptyHoy a las 2:06 pm por ПΣӨƧӨFƬ

» pdfFactory Pro 9.08 Multilingual
Machine Learning Theory (Basic)  NEW EmptyHoy a las 2:05 pm por ПΣӨƧӨFƬ

» Telegram Desktop Messenger 5.7.1 AIO Silent Multilingual
Machine Learning Theory (Basic)  NEW EmptyHoy a las 1:47 pm por ℛeℙ@¢ᴋ€r

» Microsoft Edge WebView2 130.0.2849.68 AIO Silent
Machine Learning Theory (Basic)  NEW EmptyHoy a las 1:33 pm por ℛeℙ@¢ᴋ€r

» Microsoft Edge Stable 130.0.2849.68 Dual x86x64 [Silent]
Machine Learning Theory (Basic)  NEW EmptyHoy a las 11:35 am por ℛeℙ@¢ᴋ€r

» WordWeb Pro 10.42 + Ultimate Reference Bundle
Machine Learning Theory (Basic)  NEW EmptyHoy a las 10:16 am por ℛeℙ@¢ᴋ€r

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Machine Learning Theory (Basic) NEW

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 76905
Fecha de inscripción : 20/08/2016

Machine Learning Theory (Basic)  NEW Empty
MensajeTema: Machine Learning Theory (Basic) NEW   Machine Learning Theory (Basic)  NEW EmptyJue Ago 29, 2024 12:27 am

Machine Learning Theory (Basic) NEW


Machine Learning Theory (Basic)  NEW 0e28e3a4fdfdfd46516316dc55642f08

Published 8/2024
Duration: 44m | Video: .MP4, 1920x1080 30 fps | Audio: AAC, 44.1 kHz, 2ch | Size: 349 MB
Genre: eLearning | Language: English

Best Theory Course for ML


What you'll learn
Where to Collect Data For Machine Learning? | Data Collection
Data Preprocessing Techniques/Steps
Feature Engineering for Machine Learning
Supervised vs Unsupervised vs Reinforcement Learning
Requirements
Basic Computer Literacy: Familiarity with using a computer, including browsing the internet, using basic software, and managing files.
Interest in Programming: A genuine interest in learning programming and problem-solving techniques.
Access to a Computer: A personal computer with a stable internet connection to participate in online classes, complete assignments, and practice coding.
Basic Understanding of Mathematics: Knowledge of high school-level mathematics, including algebra, is beneficial for understanding algorithms and data structures.
Description
The
"Machine Learning Theory (Basic)"
course offers a thorough introduction to the core principles and foundational concepts of machine learning, making it an ideal starting point for beginners. This course is designed to demystify the complex world of machine learning by breaking down the essential topics that form the backbone of this rapidly growing field. Students will begin with understanding the basics of data collection, learning where and how to gather relevant data, a critical first step in any machine learning project.
As the course progresses, students will delve into data preprocessing techniques, which are vital for transforming raw data into a format suitable for modeling. This includes learning how to clean data, handle missing values, and normalize datasets, ensuring that the data is in optimal condition for analysis.
Feature engineering, another key topic, will teach students how to create and select the most relevant features to enhance model performance. This skill is crucial as it directly impacts the accuracy and effectiveness of machine learning models.
The course also provides a comprehensive overview of the different learning paradigms-supervised, unsupervised, and reinforcement learning-offering students insight into when and how to apply each method. By the end of this course, students will have gained a strong theoretical foundation in machine learning, equipping them with the knowledge to advance to more specialized studies or to begin applying these concepts to real-world problems with confidence.
Who this course is for
Beginners in Machine Learning: Individuals who are new to the field of machine learning and want to understand the foundational concepts and theories.
Aspiring Data Scientists and ML Engineers: Those who aim to build a career in data science or machine learning and are looking for an entry point into the field.
Professionals Seeking to Enhance Their Skills: Professionals who want to add machine learning knowledge to their existing skill set, regardless of their background.
Individuals Preparing for Further Studies: Those planning to pursue advanced studies or certifications in machine learning and wish to establish a strong theoretical foundation.

Homepage:


Código:
https://www.udemy.com/course/machine-learning-theory-basic-new/


Screenshots



Machine Learning Theory (Basic)  NEW 5f77e08b16d060e59d6a30fb83d9cab1



Download link






rapidgator.net:
Código:

https://rapidgator.net/file/29377cd608ada6652d69ce5df1aadaa0/mibvy.Machine.Learning.Theory.Basic.NEW.rar.html

nitroflare.com:
Código:

https://nitroflare.com/view/EBFCA38BEABB71A/mibvy.Machine.Learning.Theory.Basic.NEW.rar
Volver arriba Ir abajo
 

Machine Learning Theory (Basic) NEW

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Machine Learning in GIS Understand the Theory and Practice
» Data Science And Machine Learning Fundamentals [Theory Only]
» Machine Learning in GIS : Understand the Theory and Practice [Updated 10/2020]
» Machine Learning in GIS: Understand the Theory and Practice (Updated 5/2020)
» Machine Learning the basic

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-