Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
tano1221
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
ПΣӨƧӨFƬ
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
大†Shinegumi†大
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
ℛeℙ@¢ᴋ€r
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
ronaldinho424
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
Engh3
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
geodasoft
Crash Course Introduction To Machine  Learning Vote_lcapCrash Course Introduction To Machine  Learning Voting_barCrash Course Introduction To Machine  Learning Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:54 pm por ПΣӨƧӨFƬ

» Ashampoo Snap 16.0.9 (x64) Multilingual
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:52 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:14 pm por tano1221

» imobie DroidKit 2.3.2.20241122 (x64)
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:03 pm por tano1221

» BlueStacks 5.21.610.1003 (Full Offline Installer)
Crash Course Introduction To Machine  Learning EmptyHoy a las 1:01 pm por tano1221

» Aiseesoft Phone Mirror 2.2.56 (x64) Multilingual
Crash Course Introduction To Machine  Learning EmptyHoy a las 12:58 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Crash Course Introduction To Machine Learning

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

Crash Course Introduction To Machine  Learning Empty
MensajeTema: Crash Course Introduction To Machine Learning   Crash Course Introduction To Machine  Learning EmptyMar Sep 17, 2024 7:36 am

Crash Course Introduction To Machine Learning


Crash Course Introduction To Machine  Learning 39a401f1dee9c3823c3e0dad123b1a29

Published 9/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 292.05 MB | Duration: 0h 40m

Kickstart Your Machine Learning Journey: Hands-On Projects with Python Libraries


What you'll learn
Learn the key concepts of Machine Learning
Get experienced with Jupyter Notebooks
Learn how to use Python libraries, such as Scikit-learn, numpy, pandas, matplotlib
Data handling & cleaning to be used in Machine Learning
Introduced to common ML algorithms
Learn to evaluate the performance of a model
Have hands-on experience with ML algorithms
Requirements
Basic understanding of high school mathematics
Some Python experience would be helpful
Description
Welcome to "Crash Course Introduction to Machine Learning"! This course is designed to provide you with a solid foundation in machine learning, leveraging the powerful Scikit-learn library in Python.What You'll Learn:The Basics of Machine Learning: Understand the key concepts and types of machine learning, including supervised, unsupervised, and reinforcement learning.Setting Up Your Environment: Get hands-on experience setting up Python, Jupyter Notebooks, and essential libraries like numpy, pandas, matplotlib, and Scikit-learn.Data Preprocessing: Learn how to load, clean, and preprocess data, handle missing values, and split data for training and testing.Building Machine Learning Models: Explore common algorithms such as Linear Regression, Decision Trees, and K-Nearest Neighbors. Train and evaluate models(Linear Regression), and understand performance metrics like accuracy, R^2 and scatter values in plots to measure the prediction.Model Deployment: Gain practical knowledge on saving your pre-trained model for others to use.This course is structured to provide you with both theoretical understanding and practical skills. Each section builds on the previous one, ensuring you develop a comprehensive understanding of machine learning concepts and techniques.Why This Course?Machine learning is transforming industries and driving innovation. This course equips you with the knowledge and skills to harness the power of machine learning, whether you're looking to advance your career, work on personal projects, or simply explore this exciting field.Prerequisites:Basic understanding of Python programming.No prior knowledge of machine learning is required.Enroll Today!Join me on this journey to become proficient in machine learning with Scikit-learn. By the end of this course, you'll have the confidence to build, evaluate, and deploy your machine learning models. Let's get started!
Overview
Section 1: Introduction
Lecture 1 Introduction
Section 2: Basics of Machine Learning
Lecture 2 AI vs Machine Learning vs Deep Learning
Lecture 3 Types of Machine Learning
Lecture 4 Key Terminology
Section 3: Setting up the environment
Lecture 5 Installing Anaconda Distribution
Lecture 6 The importance of Jupyter Notebooks
Section 4: Data Preprocessing
Lecture 7 Data Loading & Cleaning
Lecture 8 Data Splitting
Section 5: Building a simple ML model
Lecture 9 Introduction to ML models & using one
Lecture 10 Common ML models
Lecture 11 Evaluating accuracy
Section 6: Saving the trained model
Lecture 12 Saving the model using Pickle
Lecture 13 Publishing the ML model
Section 7: Conclusion and Next Steps
Lecture 14 Recap of What You've Learned
Lecture 15 Resources
Section 8:[Extra] Improving a model's performance
Lecture 16 5 common methods to improve a model's performance
Anyone eager enough to learn how machine learning works and to break down the magic to reality

Screenshots

Crash Course Introduction To Machine  Learning 0f6b7201923480816cac8f632d3111e5

rapidgator.net:
Código:

https://rapidgator.net/file/cf6751f3fcf01d2b72bbc955ff0b933b/mpazv.Crash.Course.Introduction.To.Machine.Learning.rar.html

nitroflare.com:
Código:

https://nitroflare.com/view/6F2D14FCE6E5E55/mpazv.Crash.Course.Introduction.To.Machine.Learning.rar
Volver arriba Ir abajo
 

Crash Course Introduction To Machine Learning

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Machine Learning Crash Course
» Machine Learning - Crash Course By Educational Engineering Team
» Introduction To Ml.Net Or Machine Learning With .Net
» Introduction to AI & Machine Learning
» Introduction to Machine Learning - Part Two

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-