Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
tano1221
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
ПΣӨƧӨFƬ
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
大†Shinegumi†大
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
ℛeℙ@¢ᴋ€r
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
ronaldinho424
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
Engh3
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
geodasoft
Traffic Forecasting with Python LSTM & Graph Neural  Network Vote_lcapTraffic Forecasting with Python LSTM & Graph Neural  Network Voting_barTraffic Forecasting with Python LSTM & Graph Neural  Network Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Write A Sales Pages That Converts: For Digital Product Only
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:48 am por missyou123

» Web Dev Made Relatively Easy Using Laravel, Vue, And Wizweb
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:46 am por missyou123

» US GAAP ASC 842 Lease Accounting
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:44 am por missyou123

» Udemy-Zero Trust Network Security
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:42 am por missyou123

» Transform Your Life with This Secret Meditation Course
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:40 am por missyou123

» The Complete Perplexity AI: From Zero to Hero
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:38 am por missyou123

» Tableau For Data Science: From Zero To Hero
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:36 am por missyou123

» Quickbooks Online For Landlords And Property Management
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:34 am por missyou123

» On-Page, On-Site And Programmatic Seo
Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 8:32 am por missyou123

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Traffic Forecasting with Python LSTM & Graph Neural Network

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78387
Fecha de inscripción : 20/08/2016

Traffic Forecasting with Python LSTM & Graph Neural  Network Empty
MensajeTema: Traffic Forecasting with Python LSTM & Graph Neural Network   Traffic Forecasting with Python LSTM & Graph Neural  Network EmptyHoy a las 6:58 am

Traffic Forecasting with Python: LSTM & Graph Neural Network

Traffic Forecasting with Python LSTM & Graph Neural  Network 95f6be3f5420ff5d808bfcb97d8d03e8

Published 11/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 8m | Size: 244 MB

Python-driven traffic forecasting with Keras: LSTM and Graph Convolutional Networks for spatiotemporal data modeling


What you'll learn
Understand and analyze real-world traffic data using Python.
Implement and apply Graph Convolutional Networks (GCNs) for traffic data.
Combine LSTM networks with GCNs for time series forecasting.
Preprocess and normalize large datasets for machine learning.
Build, train, and evaluate predictive models using TensorFlow and Keras.
Visualize and interpret model results for traffic prediction.
Requirements
Basic proficiency in Python programming.
Access to a computer with an internet connection for coding and data analysis.
Description
This course offers an in-depth journey into the world of advanced time series forecasting, specifically tailored for traffic data analysis using Python. Throughout the course, learners will engage with the PeMSD7 dataset, a real-world traffic speed dataset, to develop predictive models that can forecast traffic conditions with high accuracy. The course focuses on integrating Long Short-Term Memory (LSTM) networks with Graph Convolutional Networks (GCNs), enabling learners to understand and apply cutting-edge techniques in spatiotemporal data analysis.Key topics include data preprocessing, feature engineering, model building, and evaluation, with hands-on coding in Python to solidify understanding. Learners will also gain practical experience in using popular libraries such as TensorFlow and Keras for deep learning applications.This course is ideal for those looking to advance their careers in data science, machine learning, or AI-driven industries. The practical skills acquired will be highly valuable for roles in smart city planning, transportation analysis, and any field that relies on predictive modeling. By the end of the course, learners will not only have a strong grasp of advanced forecasting techniques but will also be well-prepared for job opportunities in data science and related fields, where they can contribute to innovative solutions in traffic management and urban development.
Who this course is for
Data scientists and machine learning engineers interested in time series forecasting.
Python programmers looking to enhance their skills in deep learning and graph-based models.
Researchers and students in the fields of transportation, urban planning, or smart cities.
Professionals working with traffic data or other spatiotemporal datasets.
AI enthusiasts seeking to understand and implement advanced neural network architectures like LSTM and graph convolutional networks.
Individuals with a background in data analysis who want to apply machine learning to real-world datasets.
Homepage:
Código:
https://www.udemy.com/course/traffic-forecasting-with-python-lstm-graph-neural-network/
Screenshots

Traffic Forecasting with Python LSTM & Graph Neural  Network B34caaf97f03d980352da2bdbe846dda

Download link

Say "Thank You"

rapidgator.net:
Código:

https://rapidgator.net/file/63a7fabc8d16a2aadc1a56f574a33da2/ibdsk.Traffic.Forecasting.with.Python.LSTM..Graph.Neural.Network.rar.html

k2s.cc:
Código:

https://k2s.cc/file/1e998049c88dd/ibdsk.Traffic.Forecasting.with.Python.LSTM..Graph.Neural.Network.rar
Volver arriba Ir abajo
 

Traffic Forecasting with Python LSTM & Graph Neural Network

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Sentiment Analysis with LSTM and Keras in Python (Updated)
» Python Network Programming for Network Engineers (Python 3) (Updated)
» The Basics Of Neural Network
» Convolutional Neural Network
» Neo4j Graph database Complete Tutorial With Python

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-