Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
tano1221
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
ПΣӨƧӨFƬ
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
大†Shinegumi†大
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
ℛeℙ@¢ᴋ€r
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
ronaldinho424
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
Engh3
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
geodasoft
Applied Machine Learning With Python  (2022) Vote_lcapApplied Machine Learning With Python  (2022) Voting_barApplied Machine Learning With Python  (2022) Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Applied Machine Learning With Python  (2022) EmptyHoy a las 8:05 pm por 大†Shinegumi†大

» Skylum Luminar Neo v1.22.0 (14095) (x64) Multilingual
Applied Machine Learning With Python  (2022) EmptyHoy a las 8:04 pm por 大†Shinegumi†大

»  Luxion KeyShot Studio Enterprise 2024.3 v13.2.0.184 Multilingual (x64)
Applied Machine Learning With Python  (2022) EmptyHoy a las 7:59 pm por 大†Shinegumi†大

» Ashampoo Snap 16.0.9 (x64) Multilingual
Applied Machine Learning With Python  (2022) EmptyHoy a las 7:55 pm por 大†Shinegumi†大

» CodeSector Direct Folders Pro v4.3.2
Applied Machine Learning With Python  (2022) EmptyHoy a las 7:54 pm por 大†Shinegumi†大

» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Applied Machine Learning With Python  (2022) EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Applied Machine Learning With Python  (2022) EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Applied Machine Learning With Python  (2022) EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

» WYSIWYG Web Builder 19.4.4 (x64)
Applied Machine Learning With Python  (2022) EmptyHoy a las 1:14 pm por tano1221

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Applied Machine Learning With Python (2022)

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

Applied Machine Learning With Python  (2022) Empty
MensajeTema: Applied Machine Learning With Python (2022)   Applied Machine Learning With Python  (2022) EmptyMar Oct 04, 2022 4:14 am

Applied Machine Learning With Python  (2022) 687dc6a374fc90641295f753d904efba

Published 10/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 17 lectures (3h 29m) | Size: 2.9 GB

Machine Learning with Python and MS Excel

What you'll learn
Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
Clustering: K-Means, Hierarchical Clustering
Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
Requirements
Basic knowledge of computer programming
Description
Interested in the field of Machine Learning? Then this course is for you! This course has been designed by two professional Data Scientists so that we can share our knowledge and help you learn complex theories, algorithms, and coding libraries in a simple way. We will walk you step-by-step into the World of Machine Learning. With every tutorial, you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science.
This course is fun and exciting, but at the same time, we dive deep into Machine Learning. It is structured the following way
Part 1 - Data Preprocessing
Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
Part 3 - Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
Part 4 - Clustering: K-Means, Hierarchical Clustering
Part 5 - Association Rule Learning: Apriori, Eclat
Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP
Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
Part 9 - Dimensionality Reduction: PCA, LDA, Kernel PCA
Part 10 - Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost
Moreover, the course is packed with practical exercises that are based on real-life examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models.
And as a bonus, this course includes both Python and R code templates which you can download and use on your own projects.
Important updates (June 2020)
CODES ALL UP TO DATE
DEEP LEARNING CODED IN TENSORFLOW 2.0
TOP GRADIENT BOOSTING MODELS INCLUDING XGBOOST AND EVEN CATBOOST!
Who this course is for
Just some high school mathematics level and Working professionals also

Download link

rapidgator.net:
Código:

https://rapidgator.net/file/9d82558bef5f29d0498b49d05f70a769/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar.html
https://rapidgator.net/file/9e2a45d89a830925c543f2117f7f7df0/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar.html
https://rapidgator.net/file/a9bc2faf43e0fca745c425c28735c141/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar.html

uploadgig.com:
Código:

https://uploadgig.com/file/download/93c791b28E0b3d9d/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar
https://uploadgig.com/file/download/a5024c2100e02208/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar
https://uploadgig.com/file/download/acc3673D3985cbda/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar

nitroflare.com:
Código:

https://nitroflare.com/view/6DBFC5F558AAF21/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar
https://nitroflare.com/view/76174F073788D76/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar
https://nitroflare.com/view/29ECFED03E70CB9/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar

1dl.net:
Código:

https://1dl.net/l98w5wz0z17e/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar.html
https://1dl.net/pdmhtu1wngcb/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar.html
https://1dl.net/12b3omstvdkg/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar.html
Volver arriba Ir abajo
 

Applied Machine Learning With Python (2022)

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Coursera - Applied Machine Learning In Python (Updated)
» Applied Machine Learning Algorithms
» Machine Learning applied to Astroinformatics
» Applied Machine Learning with BigQuery on Google's Cloud
» Applied Machine Learning for Spreading Financial Statements

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-