Foro Wanako1
¿Quieres reaccionar a este mensaje? Regístrate en el foro con unos pocos clics o inicia sesión para continuar.

Foro Wanako1

Programas Gratuitos, Desatendidos y Mucho más!!!
 
PortalPortal  ÍndiceÍndice  BuscarBuscar  Últimas imágenesÚltimas imágenes  ConectarseConectarse  RegistrarseRegistrarse  
Buscar
 
 

Resultados por:
 
Rechercher Búsqueda avanzada
Los posteadores más activos del mes
missyou123
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
tano1221
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
ПΣӨƧӨFƬ
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
大†Shinegumi†大
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
ℛeℙ@¢ᴋ€r
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
ronaldinho424
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
Engh3
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
geodasoft
Applied Bayesian Analysis With  R Vote_lcapApplied Bayesian Analysis With  R Voting_barApplied Bayesian Analysis With  R Vote_rcap 
Noviembre 2024
LunMarMiérJueVieSábDom
    123
45678910
11121314151617
18192021222324
252627282930 
CalendarioCalendario
Últimos temas
» Display Driver Uninstaller 18.0.8.7
Applied Bayesian Analysis With  R EmptyHoy a las 10:08 pm por ronaldinho424

» Skylum Luminar Neo v1.22.0 (14095) (x64) Multilingual
Applied Bayesian Analysis With  R EmptyHoy a las 9:50 pm por ronaldinho424

» Topaz Video AI v5.5.0 (x64)(Stable - Nov.22, 2024)
Applied Bayesian Analysis With  R EmptyHoy a las 9:45 pm por ronaldinho424

»  Luxion KeyShot Studio Enterprise 2024.3 v13.2.0.184 Multilingual (x64)
Applied Bayesian Analysis With  R EmptyHoy a las 7:59 pm por 大†Shinegumi†大

» Ashampoo Snap 16.0.9 (x64) Multilingual
Applied Bayesian Analysis With  R EmptyHoy a las 7:55 pm por 大†Shinegumi†大

» CodeSector Direct Folders Pro v4.3.2
Applied Bayesian Analysis With  R EmptyHoy a las 7:54 pm por 大†Shinegumi†大

» Wondershare Filmora 14.0.11.9772 (x64) Multilingual
Applied Bayesian Analysis With  R EmptyHoy a las 1:58 pm por ПΣӨƧӨFƬ

» Line6 Helix Native v3.80 (x64)
Applied Bayesian Analysis With  R EmptyHoy a las 1:55 pm por ПΣӨƧӨFƬ

» Focus Magic v6.23 (x64) Multilingual
Applied Bayesian Analysis With  R EmptyHoy a las 1:47 pm por ПΣӨƧӨFƬ

Sondeo
Visita de Paises
free counters
Free counters

Comparte | 
 

 Applied Bayesian Analysis With R

Ver el tema anterior Ver el tema siguiente Ir abajo 
AutorMensaje
missyou123
Miembro Mayor
Miembro Mayor


Mensajes : 78675
Fecha de inscripción : 20/08/2016

Applied Bayesian Analysis With  R Empty
MensajeTema: Applied Bayesian Analysis With R   Applied Bayesian Analysis With  R EmptyMiér Nov 06, 2024 3:46 am

Applied Bayesian Analysis With R

Applied Bayesian Analysis With  R B9d8787c9e0c4a8eef471db15bfaf368

Published 11/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 494.88 MB | Duration: 1h 12m

An accessible introduction to Bayesian statistical modeling

What you'll learn
Learn the difference between frequentist and bayesian approaches
Gain confidence with the bayesian workflow in R
Learn how to specify a variety of Bayesian models
Leverage bayesian regression for predictive modeling
Requirements
Basic familiarity with R and statistical inference
Description
This course provides a comprehensive, hands-on approach to Bayesian statistics, focusing on fundamental concepts and practical applications using R. Designed for beginners and those with some statistical background, this course will guide you through the core principles of Bayesian analysis, allowing you to understand and apply these methods to real-world data.Course StructureLecture 1: Why Bayes? Introduction and WelcomeWe start with a fundamental question: Why Bayesian statistics? This lecture introduces the advantages of Bayesian thinking, contrasting it with frequentist methods to highlight how Bayesian analysis provides a flexible, intuitive approach to data. This session sets the stage for understanding the Bayesian perspective and what you can expect to gain from this course.Lecture 2: R Setup for Bayesian StatisticsIn this session, we'll set up R for Bayesian analysis, covering essential packages and libraries, and walk through basic commands for data manipulation and visualization. By the end, you'll be equipped with the tools needed to dive into Bayesian modeling.Lecture 3: The Bayesian Trinity: Priors, Likelihood, and PosteriorsHere, we explore the three central components of Bayesian analysis: priors, likelihood, and posteriors. We'll discuss how these elements interact to shape Bayesian inference and will use R to visualize how prior beliefs combine with data to form posterior distributions.Lecture 4: Bayesian Regression in RThis lecture delves into Bayesian regression, covering linear models in a Bayesian framework. You'll learn how to specify priors, compute posterior distributions, and interpret results, building on classical regression knowledge to gain a Bayesian perspective.Lecture 5: Logistic Regression and PredictionsExpanding on regression techniques, this session introduces Bayesian logistic regression, ideal for binary outcomes and classification. You'll learn to make probabilistic predictions and understand uncertainty, essential for interpreting results in Bayesian analysis.Lecture 6: Diagnostics and VisualizationDiagnostics are critical for ensuring model reliability. This lecture covers methods for evaluating model fit, assessing convergence, and visualizing posterior distributions. We'll use R's plotting tools to gain insight into model behavior, helping you detect and address potential issues.Lecture 7: Practical Tips and ConclusionsIn our final lecture, we'll discuss practical tips for successful Bayesian analysis, including choosing priors, understanding model limitations, and interpreting results. We'll review key takeaways and best practices, equipping you with a well-rounded foundation to apply Bayesian methods confidently.This course is designed to be interactive, providing hands-on exercises to reinforce concepts and develop practical skills in Bayesian statistics using R. By the end, you'll have the tools and knowledge to apply Bayesian thinking to real-world data analysis challenges confidently. Welcome, and let's begin our Bayesian journey!
Overview
Section 1: Introduction
Lecture 1 Why Bayes? Introduction and Welcome
Lecture 2 Bayes Theorem
Lecture 3 Bayesian Priors in Detail and a Little About Sampling
Lecture 4 Bayesian Regression in R
Lecture 5 Logistic Regression and Predictions
Lecture 6 Diagnostics and Validation
Lecture 7 Practical Tips and Conclusions
Researchers and analysts seeking to learn applied statistical modeling
Screenshots

Applied Bayesian Analysis With  R 97f1c96984b61ec0ec4e0aeedb5a1f4a

Say "Thank You"

rapidgator.net:
Código:

https://rapidgator.net/file/52b629d11ca52562a6cc61d063400007/rrqgz.Applied.Bayesian.Analysis.With.R.rar.html

ddownload.com:
Código:

https://ddownload.com/x7aedc7gsmtr/rrqgz.Applied.Bayesian.Analysis.With.R.rar
Volver arriba Ir abajo
 

Applied Bayesian Analysis With R

Ver el tema anterior Ver el tema siguiente Volver arriba 
Página 1 de 1.

 Temas similares

-
» Hands-On Bayesian Methods with Python
» Introduction to Bayesian Analysis Course with Python 2021
» Gaussian Process Regression for Bayesian Machine Learning
» Coursera - Bayesian Methods for Machine Learning (Higher School of Economics)
» Machine Learning, Deep Learning and Bayesian Learning

Permisos de este foro:No puedes responder a temas en este foro.
Foro Wanako1 :: Programas o Aplicaciónes :: Ayuda, Tutoriales-